Soil Conductivity: An Important Factor for Detecting Landmine Threats and Terrain Rehabilitation

Authors

  • Taras Hutsul Educational and Scientific Institute of Biology, Chemistry and Bioresources, Chernivtsi National University, Department Geomatics, Land and AgroManagement
  • M. Khobzei
  • Y. Popiuk
  • V. Tkach
  • O. Krulikovskyi
  • A. Samila

DOI:

https://doi.org/10.3849/aimt.01916

Keywords:

electromagnetism, electrical conductivity, GIS, soil, identification, mapping, modeling, resistivity, demining, object recognition

Abstract

Post-war demining of territories is a global problem. Further research is required because none of the technical methods for mine detection are satisfactory in terms of basic parameters. The soil electric conductivity index may be taken into consideration as a completely touchy indicator of diverse residences of the soil without digging into the soil. Soil properties show high variability in space and time. Atypical heterogeneous objects of anthropogenic origin (by shape and material of manufacture) can be identified by maps of variations in the electromagnetic properties of the soil. Electromagnetic properties of the soil, mainly electric conductivity and magnetic susceptibility, have an effect on the operation of steel detectors, which can be historically most usually used for demining territories.

References

LIAO, H., H. LI and Z. MA. Soil Mechanics. Singapore: World Scientific Publishing Company, 2020. ISBN 978-981-3238-51-0.

BURGER, H.R. and D.C. BURGER. Exploration Geophysics of the Shallow Subsurface. Hoboken: Prentice Hall, 1992. ISBN 0-13-296773-1.

TELFORD, W.M., L.P. GELDART and R.E. SHERIFF. Applied Geophysics. 2nd ed. Cambridge: Cambridge University Press, 1990. ISBN 1-139-64292-8.

RHOADES, J.D. and A.D. HALVORSON. Electrical Conductivity Methods for Detecting and Delineating Saline Seeps and Measuring Salinity in Northern Great Plains Soils. Berkeley: U.S. Dept. of Agriculture, Agricultural Research Service, 1977.

SMITH-ROSE, R.L. The Electrical Properties of Soil for Alternating Currents at Radio Frequencies. Proceedings of the Royal Society of London, 1933, 140(841), pp. 359–377. https://doi.org/10.1098/rspa.1933.0074

BEVAN, B. An Early Geophysical Survey at Williamsburg, USA. Archaeological Prospection, 2000, 7, pp. 51–58. https://doi.org/10.1002/(SICI)1099-0763(200001/03)7:1<51::AID-ARP128>3.0.CO;2-I

CORWIN, D.L. and S.M. LESCH. Application of Soil Electrical Conductivity to Precision Agriculture. Agronomy Journal, 2003, 95(3), pp. 455–471. https://doi.org/10.2134/agronj2003.4550

SUDDUTH, K.A., S.T. DRUMMOND and N.R. KITCHEN. Accuracy Issues in Electromagnetic Induction Sensing of Soil Electrical Conductivity for Precision Agriculture. Computers and Electronics in Agriculture, 2001, 31(3), pp. 239–264. https://doi.org/10.1016/s0168-1699(00)00185-x

SIVCHENKO, T. Device for Determination of Conductive Properties of Soils. In: Current Trends and Prospects for the Development of Agricultural Production (in Russian) [online]. Nizhyn: Nizhyn Agricultural Institute, 2014, pp. 106–115 [viewed 2025-01-31]. Available from: http://nati.org.ua/docs/science/2014/Conference_25032014_p001.pdf

CHURCH, P., J. MCFEE, S. GAGNON and P. WORT. Electrical Impedance Tomographic Imaging of Buried Landmines. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9), pp. 2407–2420. https://doi.org/10.1109/tgrs.2006.873208

International Pilot Project or Technology Co-operation [online]. 2001 [viewed 2025-01-23]. Available from: https://op.europa.eu/s/zHCn

TAKAHASHI, K., H. PREETZ and J. IGEL. Soil Characterization and Performance of Demining Sensors [online]. 2010 [viewed 2025-01-31]. Available from: www.semanticscholar.org/paper/Soil-characterisation-and-performance-of-demining-Takahashi-Preetz/baba7e65029f697100f025ef64f0225f03bc642b?utm_source=direct_link

CALIXTO, W.P., L.M. NETO, M. WU, H.J. KLIEMANN, S.S. de CASTRO and K. YAMANAKA. Calculation of Soil Electrical Conductivity Using a Genetic Algorithm. Computers and Electronics in Agriculture, 2010, 71(1), pp. 1–6. https://doi.org/10.1016/j.compag.2009.12.002

LAMBOT, S., F. HUPET, M. JAVAUX and M. VANCLOOSTER. Laboratory Evaluation of a Hydrodynamic Inverse Modeling Method Based on Water Content Data. Water Resources Research, 2004, 40(3), pp. 1–12. https://doi.org/10.1029/2003wr002641

MINET, J., S. LAMBOT, E. SLOB and M. VANCLOOSTER. Soil Surface Water Content Estimation by Full-Waveform GPR Signal Inversion in the Presence of Thin Layers. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3), pp. 1138–1150. https://doi.org/10.1109/tgrs.2009.2031907

KATSUBE, T.J., H. MCNAIRN, Y. DAS, E. GAUTHIER, R.M. HOLT, V. SINGHROY, R. DILABIO, S. CONNELL-MADORE and L. DYKE. Rapid Mapping of Soil Electrical Conductivity by Remote Sensing: Implication for Landmine Detection and Vehicle Mobility. In: Proceedings Volume 5794, Detection and Remediation Technologies for Mines and Minelike Targets X. Orlando: SPIE, 2005, pp. 144–156. https://doi.org/10.1117/12.602825

HUTSUL, T., M. KHOBZEI, V. TKACH, O. KRULIKOVSKYI, O. MOISIUK, V. IVASHKO and A. SAMILA. Review of Approaches to the Use of Unmanned Aerial Vehicles, Remote Sensing and Geographic Information Systems in Humanitarian Demining: Ukrainian Case. Heliyon, 2024, 10(7), e29142. https://doi.org/10.1016/j.heliyon.2024.e29142

NEWNHAM, P. and D.J. DANIELS. Market for Advanced Humanitarian Mine Detectors. In: Proceedings of SPIE - The International Society for Optical Engineering. Orlando: SPIE, 2001. https://doi.org/10.1117/12.445450

DAS, Y., J.E. MCFEE, K.L. RUSSELL, G. CROSS and T.J. KATSUBE. Soil Information Requirements for Humanitarian Demining: The Case or a Soil Properties Database. In: Proceedings of SPIE - The International Society for Optical Engineering. Orlando: SPIE, 2003. https://doi.org/10.1117/12.486306

DAS, Y., J.E. MCFEE and G. CROSS. Soil Properties Database for Humanitarian Demining: A Proposal Initiative: Invited Paper Presented to the International Union of Soil Science [online]. In: 17th World Congress of Soil Science. Bangkok: IUSS, 2002 [viewed 2025-01-31]. Available from: www.researchgate.net/publication/243787365_Soil_properties_database_for_humanitarian_demining_a_proposed_initiative

KATSUBE, T.J., R.A. KLASSEN, Y. DAS, R. ERNST, T. CALVERT, G. CROSS and S. CONNELL. Prediction and Validation of Soil Electromagnetic Characteristics for Application in Landmine Detection. In: Proceedings of SPIE - The International Society for Optical Engineering. Orlando: SPIE, 2003. https://doi.org/10.1117/12.486983

IGEL, J. On the Small-Scale Variability of Electrical Soil Properties and Its Influence on Geophysical Measurements [online]. [Thesis]. Universität in Frankfurt am Main, 2007 [viewed 2025-01-31]. Available from: https://publikationen.ub.uni-frankfurt.de/frontdoor/deliver/index/docId/586/file/IgelJan.pdf

NERPIN, S.V. and A.F. CHUDNOVSKYI. Fizika Pochv. Moscow: Nauka, 1967.

GODWIN, R.J. and P.C.H. MILLER. A Review of the Technologies for Mapping Within-Field Variability. Biosystems Engineering, 2003, 84(4), pp. 393-407. https://doi.org/10.1016/s1537-5110(02)00283-0

YANG, P., K.N. LIOU, M.I. MISHCHENKO and B. GAO. Efficient Finite-Difference Time-Domain Scheme for Light Scattering by Dielectric Particles: Application to Aerosols. Applied Optics, 2000, 39(21), pp. 3727-3737. https://doi.org/10.1364/ao.39.003727

GIAO, P., S. CHUNG, D. KIM and H. TANAKA. Electric Imaging and Laboratory Resistivity Testing for Geotechnical Investigation of Pusan Clay Deposits. Journal of Applied Geophysics, 2003, 52(4), pp. 157-175. https://doi.org/10.1016/s0926-9851(03)00002-8

CORWIN, D.L. and S.M. LESCH. Application of Soil Electrical Conductivity to Precision Agriculture. Agronomy Journal, 2003, 95(3), pp. 455-471. https://doi.org/10.2134/agronj2003.4550

BREVIK, E.C., T.E. FENTON and A. LAZARI. Soil Electrical Conductivity as a Function of Soil Water Content and Implications for Soil Mapping. Precision Agriculture, 2006, 7(6), pp. 393-404. https://doi.org/10.1007/s11119-006-9021-x

LAMOTTE, M., A. BRUAND, M. DABAS, P. DONFACK, G. GABALDA, A. HESSE, H. FRANÇOIS-XAVIER and R. HENRI. Distribution of Hardpan in Soil Cover of Arid Zones. Data from a Geoelectrical Survey in Northern Cameroon. Comptes rendus de l’Académie des sciences, Série 2, 318, pp. 961-968. ISSN 0764-4450.

PALACKY, G.J. Resistivity Characteristics of Geologic Targets. In: N.N. MISAC and D. JOHN, eds. Electromagnetic Methods in Applied Geophysics: Volume 1, Theory. Houston: Society of Exploration Geophysicists, 1988, pp. 52-129. ISBN 0-931830-51-6.

HENDRICKX, J.M.H., R.L. VAN DAM, B. BORCHERS, J.O. CURTIS, H.A. LENSEN and R.S. Harmon. Worldwide Distribution of Soil Dielectric and Thermal Properties. In: Proceedings of SPIE - The International Society for Optical Engineering. Orlando: SPIE, 2003. https://doi.org/10.1117/12.487116

VAN DAM, R.L., B. BORCHERS, J.M.H. HENDRICKX and R.S. HARMON. Effects of Soil Water Content and Texture on Radar and Infrared Landmine Sensors: Implications for Sensor Fusion. In: Proceedings of SPIE - The International Society for Optical Engineering. Orlando: SPIE, 2003.

HEYMANS, H. and A. CLAASSENS. Effectiveness of GIS in Mine Action [online]. JMU Scholarly Commons, 2015, 19(3), pp. 54-56 [viewed 2025-01-31]. ISSN 1533-9440. Available from: https://commons.lib.jmu.edu/cisr-journal/vol19/iss3/13/

GAVRYLIUK, V.A., R.Y. MELYMUKA and A.V. DOLIUK. Dynamics of Changes in Electrical Conductivity of Reclaimed Soils of Western Polissya under Different Types of Use. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 2023, 51(1), pp. 20-27. https://doi.org/10.32782/agrobio.2023.1.3

POPERECHNY, P. and Ukrainian Hydrometeorological Institute UHMI. Methods and Tools of Agrometeorological Measurements of Soil Parameters (in Russian) [online]. UHMI, 2022 [viewed 2025-01-31]. Available from: https://web.archive.org/web/20230323080939/https://uhmi.org.ua/rozr/agro/

VAN DAM, R.L., B. BORCHERS and J.M.H. HENDRICKX. Strength of Landmine Signatures under Different Soil Conditions: Implications for Sensor Fusion. International Journal of Systems Science, 2005, 36(9), pp. 573-588. https://doi.org/10.1080/00207720500147800

JOHNSON, C., K. ESKRIDGE and D. CORWIN. Apparent Soil Electrical Conductivity: Applications for Designing and Evaluating Field-Scale Experiments. Computers and Electronics in Agriculture, 2005, 46(1-3), pp. 181-202. https://doi.org/10.1016/j.compag.2004.12.001

DIONNE, B.C., D.P. ROUNBEHLER, E.K. ACHTER, J.R. HOBBS and D.H. FINE. Vapor Pressure of Explosives. Journal of Energetic Materials, 1986, 4(1-4), pp. 447-472. https://doi.org/10.1080/07370658608011353

HANNAM, J.A. and J.A. DEARING. Mapping Soil Magnetic Properties in Bosnia and Herzegovina for Landmine Clearance Operations. Earth and Planetary Science Letters, 2008, 274(3-4), pp. 285-294. https://doi.org/10.1016/j.epsl.2008.05.006

Mine Ban Policy [online]. 2024 [viewed 2025-01-23]. Available from: https://the-monitor.org/country-profile/ukraine/mine-ban-policy?year=2023

DIDUR, O. and M. SHEVENKO. Mines. A Soldier’s Guide. 2nd ed. [online]. 2022 [viewed 2025-01-23]. Available from: https://web.archive.org/web/20250109130044/https://sprotyvg7.com.ua/wp-content/uploads/2024/12/%D0%BC%D1%96%D0%BD%D0%B8.pdf

KYRYLENKO, V. and V. NEROBA. The Global Problem of Mine Clearance: Status and Approaches to Solving. Collection of the Scientific Papers of the Centre for Military and Strategic Studies, 2020, 2(66), pp. 115-119. https://doi.org/10.33099/2304-2745/2019-2-66/115-119

SAMILA, A., O. HOTRA, O. MOISIUK, M. KHOBZEI and T. KAZEMIRSKIY. Modified Transceiver Antenna for NQR Detection of Explosive Objects in Demining Conditions. Energies, 2022, 15(19), 7348. https://doi.org/10.3390/en15197348

JUMAAT, N.F.H., B. AHMAD and H.S. DUTSENWAI. Land Cover Change Mapping Using High Resolution Satellites and Unmanned Aerial Vehicle. IOP Conference Series Earth and Environmental Science, 2018, 169, 012076. https://doi.org/10.1088/1755-1315/169/1/012076

YANCHUK, R. and S. TROKHYMETS. Creating Cartographic Basis for Developing Master Plans of Settlements on Materials of Aerial Surveys Using Unspecialized Inexpensive UAV. Bulletin National University of Water and Environmental Engineering, 2017, 1(77), pp. 32-39.

GKNTA 2.04-02-98, 1999. Instruction of Topographic Information at Scales 1:5000, 1:2000, 1:1000, 1:500 (in Ukrainian) [online]. 1999 [viewed 2025-01-23]. Available from: https://zakon.rada.gov.ua/laws/show/z0393-98#Text

LOSÈ, L.T., F. CHIABRANDO and F.G. TONOLO. Boosting the Timeliness of UAV Large Scale Mapping. Direct Georeferencing Approaches: Operational Strategies and Best Practices. ISPRS International Journal of Geo-Information, 2020, 9(10), 578. https://doi.org/10.3390/ijgi9100578

HUTSUL, T., V. TKACH and M. KHOBZEI. Humanitarian Demining: How Can UAVs and Internet of Things Help? Security of Infocommunication Systems and Internet of Things, 2023, 1(2), 02004. https://doi.org/10.31861/sisiot2023.2.02004

LOGSDON, S.D., D. CLAY, D. MOORE and T. TSEGAYE (eds). Soil Science Step-by-Step Field Analysis. Madison: Soil Science Society of America, 2008. ISBN 0-89118-849-5.

KACHELRIESS, R. Arcgis Pro 2.2 Now Available! [online]. 2018. [viewed 2025-01-31]. Available from: https://www.esri.com/arcgis-blog/products/arcgis-pro/uncategorized/arcgis-pro-2-2-now-available/

PATHIRANA, S., S. LAMBOT, M. KRISHNAPILLAI, M. CHEEMA, C. SMEATON and L. GALAGEDARA. Ground-Penetrating Radar and Electromagnetic Induction: Challenges and Opportunities in Agriculture. Remote Sensing, 2023, 15(11), 2932. https://doi.org/10.3390/rs15112932

RHOADES, J.D. and D.L. CORWIN. Determining Soil Electrical Conductivity-Depth Relations Using an Inductive Electromagnetic Soil Conductivity Meter. Soil Science Society of America Journal, 1981, 45(2), pp. 255-260. https://doi.org/10.2136/sssaj1981.03615995004500020006x

ROMAGNOLI, F. and D. BLUMBERGA. Teaching Applied Geophysics at RTU: The Basics for a Fast, Green, Inexpensive Subground Investigation Method. Scientific Journal of Riga Technical University Environmental and Climate Technologies, 2010, 5(1), pp. 91-97. https://doi.org/10.2478/v10145-010-0040-5

MESTER, A. Quantitative Two-Layer Inversion and Customizable Sensor-Array Instrument for Electromagnetic Induction based Soil Conductivity Estimation [Thesis]. Jülich: Zentralinstitut für Engineering, Elektronik und Analytik, 2015. ISBN 978-3-95806-035-7.

FENG, M., G. ROQUETA and L. JOFRE. Non-Destructive Evaluation (NDE) of Composites: Microwave Techniques. Non-Destructive Evaluation (NDE) of Polymer Matrix Composites, 2013, pp. 574-616. https://doi.org/10.1533/9780857093554.4.574

HODZINSKA, I., T. HUTSUL, and I. KAZIMIR. Identifying the Impact of Generalization on Maps of Erosion Dissection at Different Scales. Reports on Geodesy and Geoinformatics, 2023, 115(1), pp. 1-8. https://doi.org/10.2478/rgg-2023-0001

HUTSUL, T., K. MYRONCHUK, V. TKACH and M. KHOBZEI. Economic Efficiency and Priority of Demining: International Experience. Ukrainian Journal of Applied Economics and Technology, 2023, 8(2), pp. 308-313. https://doi.org/10.36887/2415-8453-2023-2-44

LUND, E.D., P. COLIN, D. CHRISTY and P.E. DRUMMOND. Applying Soil Electrical Conductivity Technology to Precision Agriculture. In: P.C. ROBERT, R.H. RUST and W.E. LARSON (eds). Proceedings of the Fourth International Conference on Precision Agriculture. Madison: American Society of Agronomy, 1999, pp. 1089-1100. ISBN 0-89118-140-7.

Downloads

Published

23-04-2025

Issue

Section

Case study

Categories

How to Cite

Hutsul, T., Khobzei, M., Popiuk, Y., Tkach, V., Krulikovskyi, O., & Samila, A. (2025). Soil Conductivity: An Important Factor for Detecting Landmine Threats and Terrain Rehabilitation. Advances in Military Technology, 20(1), 137-153. https://doi.org/10.3849/aimt.01916

Similar Articles

31-40 of 73

You may also start an advanced similarity search for this article.