Target Programming with Multicriterial Restrictions Application to the Defense Budget Optimization
DOI:
https://doi.org/10.3849/aimt.01291Keywords:
method of leading priorities, target function, utility function, targeting informational technology, weighting factorsAbstract
The analysis of the main factors of decision-making on media planning, methods of automation the advertising targeting and existing models and algorithms discovered, the contradictions between the possibilities of traditional methods and classical models of advertising budget distribution. The requirements to automate decision-making support in managing the advertising process became important when organizing and conducting public Purchases for the needs of the Armed Forces of Ukraine. In order to increase the efficiency of defense resources management for rational advertising budget distribution between different types of advertising platforms, an advanced mathematical model for making decisions on the application of targeting informational technology to advertising has been developed.
References
SMIT, E.G., VAN NOORT, G. and VOORVELD, H.A. Understanding Online Behavioral Advertising: User Knowledge, Privacy Concerns and Online Coping Behavior in Europe. Computers in Human Behavior, 2014, vol. 32, no. 1, p. 15-22. https://doi.org/10.1016/j.chb.2013.11.008.
SCHUMANN, J.H., VON WANGENHEIM, F. and GROENE, N. Targeted Online Advertising: Using Reciprocity Appeals to Increase Acceptance among Users of Free Web Services. Journal of Marketing, 2014, vol. 78, no. 1, p. 59-75. https://doi.org/10.1509/jm.11.0316.
MOORE, R.S., MOORE, M.L., SHANAHAN, K.J., HORKY, A. and MACK, B. Creepy Marketing: Three Dimensions of Perceived Excessive Online Privacy Violation. Marketing Management, 2015, vol. 25, no. 1, p. 42-53. ISSN 1534-973X.
HAM, C.-D. and NELSON, M.R. The Role of Persuasion Knowledge, Assessment of Benefit and Harm, and Third-Person Perception in Coping with Online Behavioral Advertising, Computers in Human Behavior, 2016, vol. 62, no. 1, p. 689-702. https://doi.org/10.1016/j.chb.2016.03.076.
BARABASH, O.V., DAKHNO, N.B., SHEVCHENKO, H.V., MUSIENKO, A.P. and NESHCHERET, O.S. Information Technology of Targeting: Optimization of Decision Making Process in a Competitive Environment. International Journal of Intelligent Systems and Applications, 2017, vol. 9, no. 12, p. 1-9. https://doi.org/10.5815/ijisa.2017.12.01.
BARABASH, O.V. and SHEVCHENKO, G.V. Methodology for Assessing the Effectiveness of Decision-Making on the Application of Information Technology Targeting In Conditions of Competition and Incomplete Awareness. Collection of Scientific Works of the Military Institute of Kyiv Taras Shevchenko National University, 2017, vol. 57, p. 192-203. ISSN 2524-0056.
HASSAN, N. and HALIM, B.A. Mathematical Modelling Approach to the Management of Recreational Tourism Activities at Wetland Putrajaya. Sains Malaysiana, 2012, vol. 41, no. 9, p. 1155-1161. ISSN 0126-6039.
HASSAN, N., SIEW, L.W. and SHEN, S.Y. Portfolio Decision Analysis with Maximin Criterion in the Malaysian Stock Market. Applied Mathematical Sciences, 2012, vol. 6, no. 109-112, p. 5483-5486. ISSN 1312-885X.
NASH J.F. Noncooperative Games. Annals of Mathematics, 1951, vol. 54, p. 286-298. https://doi.org/10.2307/1969529.
KOVACOVA, M., KUBALA, P., KLESTIK, T. and VALASKOVA, K. Bankruptcy Models: Verifying their Validity as a Predictor of Corporate Failure. Polish Journal of Management Studies, 2018, vol. 18, no. 1, p. 167-179. https://doi.org/10.17512/pjms.2018.18.1.13.
RUPESH, K.P., PREM, V. and PRADEEP, K.A Goal Programming Model for Paper Recycling System. Omega, 2008, vol. 36, no. 3, p. 405-417. https://doi.org/10.1016/j.omega.2006.04.014.
HASSAN, N., PAZIL, A.H.M., IDRIS, N.S. and RAZMAN, N.F. A Goal Programming Model for Bakery Production. Advances in Environmental Biology, 2013, vol. 7, no. 1, p. 187-190. https://doi.org/10.12988/ams.2013.310574.
MUKHIN, V., LOUTSKII, H., BARABASH, O., KORNAGA, Y. and STESHYN, V. Models for Analysis and Prognostication of the Indicators of the Distributed Computer Systems Characteristics. International Review on Computers and Software, 2015, vol. 10, no. 12, p. 1216-1224. https://doi.org/10.15866/irecos.v10i12.8023.
CHENG, S.K., ELKMEL, A. and NILAY, S. Optimization Methods for Petroleum Fields Development and Production Systems: a Review. Optimization and Engineering, 2017, vol. 12, no. 1, p. 1-35. https://doi.org/10.1007/s11081-017-9365-2.
SHEVCHENKO, G. Decision Theory for Optimal Design of Advertising Company with Target Audience Maximization. In Zborník príspevkov z medzinárodné vedecko-odborné konferencie «Riadenie bezpečnosti zložitých systémov 2015». Liptovský Mikuláš: Akadémia ozbrojených síl gen. M. R. Štefánika, 2015, p. 323-331. ISBN 978-80-8040-506-9.
KLIESTIK, T., MISANKOVA, M. and BARTOSOVA, V. Application of Multi Criteria Goal Programming Approach for Management of the Company. Applied Mathematical Sciences, 2015, vol. 9, no. 115, p. 5715-5727. https://doi.org/10.12988/ams.2015.57488.
UMARUSMAN, N. Min-Max Goal Programming Approach for Solving Multi‐Objective De Novo Programming Problems. International Journal of Operations Research, 2013, vol. 10, n. 2, p. 92-99. ISSN 1813-713X.
DODONOV, A.G., LANDE, D.V., PRISHCHEPA, V.V. and PUTIATIN, V.G. Competitive Intelligence of Computer Networks (in Russian). Kyiv: Institute for Information Recording National Academy of Science of Ukraine, 2013, 250 p. ISBN 978-966-00-1087-1.
MASHKOV, V., BARILLA, J. and SIMR, P. Applying Petri Nets to Modeling of Many-Core Processor Self-Testing when Tests are Performed Randomly. Journal of Electronic Testing Theory and Applications, 2013, vol. 29, no. 1, p. 25-34. https://doi.org/10.1007/s10836-012-5346-8.
BLEIER, A. and EISENBEISS, M. The Importance of Trust for Personalized Online Advertising. Journal of Retailing, 2015, vol. 91, no. 3, p. 390-409. https://doi.org/10.1016/j.jretai.2015.04.001.
RAUVERS, F., REMMELSWAAL, P., FRANSEN, M.L., DAHLEN, M. and VAN NOORT, G. The Impact of Creative Media Advertising on Consumer Responses: Two Field Experiments. International Journal of Advertising, 2018, vol. 37, no. 5, p. 749-768. https://doi.org/10.1080/02650487.2018.1480167.
PASHYNSKA, N., SNYTYUK, V., PUTRENKO, V. and MUSIENKO, A. A Decision Tree in a Classification of Fire Hazard Factors. Еastern-European Journal of Enterprise Technologies, 2016, vol. 5, no. 10, p. 32-37. https://doi.org/10.15587/1729-4061.2016.79868.
BEKESIENE, S. and HOSKOVA-MAYEROVA, S. Decision Tree-Based Classification Model for Identification of Effective Leadership Indicators. Journal of Mathematical and Fundamental Science, 2018, vol. 50, no. 2, p. 121-141. https://doi.org/10.5614/j.math.fund.sci.2018.50.2.2.
LEE, S., LEE, Y., Lee, JOING, I. and PARK, J. Personalized e-Services: Consumer Privacy Concern and Information Sharing. Social Behavior and Personality, 2015, vol. 43, no. 5, p. 729-740. https://doi.org/10.2224/sbp.2015.43.5.729.
AGUIRRE, E., MAHR, D., GREWAL, D., DE RUYTER, K. and WETZELS, M. Unraveling the Personalization Paradox: The Effect of Information Collection and Trust-Building Strategies on Online Advertisement Effectiveness. Journal of Retailing, 2015. vol. 91, no. 1, p. 34-49. https://doi.org/10.1016/j.jretai.2014.09.005.
Downloads
Published
License
Copyright (c) 2019 Advances in Military Technology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Users can use, reuse and build upon the material published in the journal for any purpose, even commercially.