Evaluation of Static and Dynamic Properties of Energy Absorbers for Explosion Resistant Elements
Keywords:
blast energy absorber, expanded glass, expanded ceramics, numerical simulation, blast testAbstract
This paper describes experimental investigation on the response of new advanced materials to low and high velocity load. The main aim of the experiments is to improve the behaviour of sandwich structures under dynamic loading, in particular explosion. Two types of porous raw particle materials based on expanded glass and ceramics in combination with polymeric binder were used to design a new type of blast wave energy absorber. The effect of binder amount and type of filler on the static and dynamic properties of designed materials was evaluated. Bulk density, compressive and flexural strength under quasi-static load were determined on prism specimens. Izod impact strength characteristics were evaluated as well. Numerical simulations were conducted to determine the dynamic response of the material in sandwich structure, using implicit/explicit solver LS-Dyna. As the last step, the developed material was used as the interlayer of blast resistant litter bin, and its functionality was verified by real field blast tests.
References
GUPTA, N. M.andSHUNMUGASAMY, V.C. Mater. Sci. Eng. A, 2011, vol. 528, p.7596–7605.
GUPTA, N. M., SHUNMUGASAMY, V.C, NGUYEN, Q. andCOELHO, P. G.Mater.Sci. Eng. A, 2010, vol. 527, p. 6166–6177.
DRDLOVA, M. FRANK,M.,BUCHAR, J.andKRÁTKÝ, J. High Strain Rate Characteristics of the Advanced Blast Energy Absorbers. International Science Index, 2014, vol. 8, no. 10, p. 994-997.
LS Dyna User Manual, Volume II. Material models. Livermore: Livermore Software Technology Corporation, 2012.
SLIK, G. VOGEL, G andCHAWDA,V. Material model validation of a high efficient energy absorbing foam. In Proceedings of the 5thLS-DYNA forum.Ulm: DYNAmore,2006.
YANG, M.andQUIAO, P. High energy absorbing materials for blast resistant design. In Blast protection of civil infrastructure and vehicles using composites. Boca Raton: CRC Press, 2010, p. 88-119.
Downloads
Published
License
Copyright (c) 2015 Advances in Military Technology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Users can use, reuse and build upon the material published in the journal for any purpose, even commercially.