Flight Range Extension of a Guided Aerial Bomb with a Rocket Engine during Climb Bombing
DOI:
https://doi.org/10.3849/aimt.01462Keywords:
aircraft, climbing, guided aerial bomb, horizontal range, motion trajectory, solid-propellant rocket engine, total thrust impulseAbstract
The possibility of a significant flight range extension of a guided aerial bomb during climb bombing due to the jet thrust created by a solid-propellant rocket engine was considered. By means of simulation, a comparative analysis of the range of a guided aerial bomb equipped (not equipped) with a solid-propellant rocket engine under typical flight conditions of the carrier aircraft during level flight and climb bombing was performed. It was demonstrated that the use of a solid-propellant rocket engine, whose mass is 20 % of the guided aerial bomb’s mass, allows to increase the horizontal range of its flight at least twice.
References
FOMYCHEVA O.A. Improved Ballistic Capability of Guided Aerial Bombs. News of TulGU. Technical Sciences (in Russian). 2016, 4 , pp. 98-105. ISSN 2071-6168.
V.Y. KYRYLLOV. Bombing (in Russian). Moscow: Military Publishing, 1960.
SEMENOV S.S., V.N. KHARCHEV and A.Y. YOFFYN. Assessment of the Tech- nical Level of Weapons and Military Equipment (in Russian). Moscow: Radio and Communications, 2004. ISBN 978-5-256-01671-5.
AHAFONOV Y.M., O.M. ZHARYK, Y.M. OSYPOV and Y.A. TKACHENKO. The Ways of Aviation Munition Modernization Substantiation (in Russian). Systems of Arms and Military Equipment, 2017, 2 (50), pp. 50-52. ISSN 1997-9568.
VETROV V.V., V.A. DUNAEV, E.M. KOSTIANOI and V.V. MOROZOV Implementation of the Near-Zone Ballistic Efficiency Concept (in Russian). Basic Research, 2012, 11 (2), pp. 377-382. ISSN 1812-7339.
SEMENOV. S. Major R&D Activities to Improve Guided Aerial Bombs (in Russian). Foreign Military Review, 2016, 11 , pp. 63-67. ISSN 0134-921X.
KARPOV S.Y., YU.S. KUCHERENKO, YU.N. LEVCHENKO, et al. Controlled Aviation Bomb (in Russian). Patent RF No. RU2391624. Available from: http://www.freepatent.ru/patents/2391624
I.S. KRAVCHUK and V.V. TARANENKO. Realization of Proportional Self- Homing of the Corrected Aerial Bomb According to the Information of the Satellite Navigation System (in Ukrainian). Science and Technology of the Air Force of Ukraine, 2019, 3 (36), pp. 73-78. DOI 10.30748/nitps.2019.36.08.
ARKHANHELSKYI Y.Y., P.P. AFANASEV and E.H. BOLOTOV. Design of Surface-to-Air Guided Missiles (in Russian). Moscow: MAI, 2001. ISBN 978-5-7035-2335-4.
VASYLYN N.IA. and A.A. HURYNOVYCH. Air-Defence Systems (in Russian). Minsk: Popury, 2002. ISBN 978-985-438-681-2.
FYMUSHKYN F. and V.SLUHYN. Air-Defence Systems Short-Range “Pantir-C1-0 ˮ with Optoelectronic Guidance System (in Russian). M ilitary Parade Journal, 2004, 63 (03), pp 12-14. ISSN 1029-4678.
Downloads
Published
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Users can use, reuse and build upon the material published in the journal for any purpose, even commercially.