Study on the Dynamic Performance of Armored Vehicle in Lateral Direction due to Firing Impact
Keywords:
Armoured vehicle, firing recoil force, firing angle, lateral motion, yaw motionAbstract
The purpose of this study is to analyze the performance of a 10 DOF wheeled armored vehicle in reponse to external disturbance due to firing recoil force, in lateral direction. An armored vehicle model was developed which consisted of 7 DOF handling model, weight distribution model, Pacejka tire model, 2 DOF Pitman Arm steering model and single DOF of gun model. A yaw moment occurred at the Center of Gravity (CG) of the armored vehicle caused by the impulse force generated during gun turret firing. This firing recoil force tends to create instability conditions for the armored vehicle during firing condition and affects the travelling path of the armored vehicle. The armored vehicle is evaluated using firing angle of 45° and 90°, caliber size of 57 and 75mm and two different speeds which are 40 and 60 km/h in order to analyze the dynamic performance of armored vehicle during firing. The armored vehicle is evaluated in terms of yaw rate, yaw angle, body sideslip angle, lateral acceleration and lateral displacement.
References
VONG, TT., HAAS, GA. and HENRY, CL. NATO reference mobility model (NRMM) modeling of the Demo III experimental unmanned ground vehicle (XUV) (No. ARL-MR-435). Army research lab aberdeen proving ground md.
SCHMITT, V., RENOU, C. andGUIGUEN,N. French Study Program to Improve Active and Passive Safety on Military Vehicles.In Proceedings: International Technical Conference on the Enhanced Safety of Vehicles, 1999, Vol. 2005, National Highway Traffic Safety.
BALOS, S., GRABULOV, V.and SIDJANIN, L. Future armoured troop carrying vehicles.Defence Science Journal,2010, vol. 60, no. 5, p. 483-490.
SOSNOWICZ, R., WACHOWIAK, P. andDORCZUK, M. Conception of military vehicle classification.Journal of KONES,2011, vol. 18, p. 585-594.
HUDHA, K., JAMALUDDIN, H. andSAMIN, P.M. Disturbance rejection control of a light armoured vehicle using stability augmentation based active suspension system. International Journal of Heavy Vehicle Systems 2008,vol. 15,no. 2, p.152-169.
TRIKANDE, MW., JAGIRDAR, VV.andSUJITHKUMAR, M. Modelling and Comparison of Semi-Active Control Logics for Suspension System of 8x8 Armoured Multi-Role Military Vehicle.Applied Mechanics and Materials,2014, vol. 592, p.2165-2178.
YEAN, T. C., HONG, M. S. andYEW, V. Fighting Vehicle Technology. DSTA Horizons, 2013, p. 62-77.
TVAROZEK, J. andGULLEROVA, M. Increasing Firing Accuracy of 2A46 Tank Cannon Built-in T-72 MBT.American International Journal of Contemporary Research, 2012,vol. 2, no. 9, p. 140-156.
HUDHA, K., KADIR, Z. A. andJAMALUDDIN, H. Simulation and experimental evaluations on the performance of pneumatically actuated active roll control suspension system for improving vehicle lateral dynamics performance. International Journal of Vehicle Design, 2014,vol. 64, no. 1, p.72-100.
APAROW, V. R., AHMAD, F., HUDHA, K.and JAMALUDDIN, H. Modelling and PID control of antilock braking system with wheel slip reduction to improve braking performance.International Journal of Vehicle Safety,2013,vol. 6, no. 3, p.265-296.
WONG, J. Y.Theory of ground vehicles. John Wiley andSons, 2001,p.58-65.
LIU, SC. Force feedback in a stationary driving simulator. Systems, Man and Cybernetics, International Conference on IEEE, Vancouver, BC, 22-25 October, 1995; p.1711-1716.
KARNOPP, D., ARGOLIS, R. andROSENBERG, R. System dynamis: modeling and simulations of mechatronic systems, New York, 2000, NY: John Wiley Sons.
SHWETHA, GN., RAMESH, HR. andSHANKAPAL, SR. Modeling, simulation and implementation of a proportional-derivative controlled column-type EPS. International Journal of Enhanced Research in Science Technology and Engineering,2013, vol.2, no.9, p.10-19.
BORKOWSKI, W., FIGURSKI, J.andWALENTYNOWICZ, J. The impact of the cannon on the combat vehicle chassis during firing. Journal of KONES, 2007,vol. 14, p.49-61.
BALLA, J. Dynamics of mounted automatic cannon on track vehicle.International Journal of Mathematical models and methods in applied sciences, 2011, vol. 5, no. 3, p.423-432.
KOLL, C. SOVIET CANNON -A Comprehensive Study of Soviet Guns and Ammunition in Calibres 12.7mm to 57mm, 2009, ISBN 978-3-200-01445-9.
Germany’s 75mm Gun, [cited 2015-08-15]. Available from: <http://www.wwiivehicles.com/ germany/guns/75-mm.asp>
HUDHA, K., APAROW, VR., MURAD,M.,ISHAK,SAF.,KADIR,ZA., AMER,NH. And RAHMAN, MLHA.Yaw Stability Control System, MalaysianPatent, 14 October 2014,PI 2015700778.
Downloads
Published
License
Copyright (c) 2016 Advances in Military Technology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Users can use, reuse and build upon the material published in the journal for any purpose, even commercially.