Development and Functional Evaluation of a Passive Ankle Exoskeleton to Support Military Locomotion

Authors

  • Luis Filipe Pratas Quinto CINAMIL/Military Academy
  • Pedro Pinheiro CINAMIL, Academia Militar, Instituto Universitário Militar, Lisbon, Portugal
  • Sérgio Gonçalves IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
  • Rafael Ferreira CINAMIL, Academia Militar, Instituto Universitário Militar, Lisbon, Portugal
  • Ivo Roupa IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
  • Miguel Tavares da Silva IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

DOI:

https://doi.org/10.3849/aimt.01536

Abstract

This work aims to develop an exoskeleton structure that complies with a set of military requirements in line with the current operational environment demands. A design process was implemented so that these requirements could be identified and embedded in the development of a functional prototype suited for laboratory trials. The prototype was manufactured using 3D scanning and additive manufacturing technologies, and a functional evaluation of the developed solution was performed by 30 subjects to assess its suitability for military applications. Results show that the developed design is suitable for military activities, incorporating requirements addressing ergonomics, range of motion and comfort. Also, additive manufacturing is suitable for developing tailor-made exoskeleton structures, allowing for the prompt production of affordable personalized parts.

Author Biographies

  • Pedro Pinheiro, CINAMIL, Academia Militar, Instituto Universitário Militar, Lisbon, Portugal

    Maintenance Regiment
    Lieutenant

  • Sérgio Gonçalves, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

    Mechanical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

    Researcher at Lisbon Biomechanics Laboratory

  • Rafael Ferreira, CINAMIL, Academia Militar, Instituto Universitário Militar, Lisbon, Portugal

    Garrison Regiment No. 3

    Lieutenant

  • Ivo Roupa, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

    Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

    Researcher at Lisbon Biomechanics Laboratory

  • Miguel Tavares da Silva, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

    Associate Professor at the Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

References

Lightening the Load [Technical Report] [online]. 2007 [viewed 2021-04-09]. Available from: https://www.onr.navy.mil/-/media/Files/history/nrac-reports/2007_rpt_lightening_the_load.ashx?la=en

MIL STD 1472 G - Design Criteria Standard - Human Engineering [online]. 2019 [viewed 2021-03-11]. Available from: http://everyspec.com/MIL-STD/MIL-STD-1400-1499/MIL-STD-1472G_39997/

ORR, R.M., R. POPE, J. COYLE and V. JOHNSTON. Occupational Loads Carried by Australian Soldiers on Military Operations. Journal of Health, Safety and Environment, 2015, 31(1), pp. 451-457. ISSN 0815-6409.

Methodologies for Evaluating the Effects of Physical Augmentation Technologies on Soldier Performance [online]. 2018 [viewed 2021-03-09]. Available from: https://apps.dtic.mil/sti/pdfs/AD1057611.pdf

KNAPIK, J.J., K.L. REYNOLDS and E. HARMAN. Soldier Load Carriage: Historical, Physiological, Biomechanical, and Medical Aspects. Military Medicine, 2004, 169(1), pp. 45-56. DOI 10.7205/milmed.169.1.45.

MUDIE, K.L., A.C. BOYNTON, T. KARAKOLIS, M.P. O’DONOVAN, G.B. KANAGAKI, H.P. CROWELL, R.K. BEGG, M.E. LAFIANDRA and D.C. BILLING. Consensus Paper on Testing and Evaluation of Military Exoskeletons for the Dismounted Combatant. Journal of Science and Medicine in Sport, 2018, 21(11), pp. 1154-1161. DOI 10.1016/j.jsams.2018.05.016.

HERR, H. Exoskeletons and Orthoses: Classification, Design Challenges and Future Directions. Journal of NeuroEngineering and Rehabilitation, 2009, 6(1), 21. ISSN 1743-0003.

PONS, J.L. Wearable Robots: Biomechatronic Exoskeletons. Hoboken: Wiley, 2008. ISBN 978-0-470-98765-0.

QUINLIVAN, B.T., S. LEE, P.M. LEE, D. LEE, M.G. LEE, C.S. LEE, N. LEE, D. WAGNER, A. ASBECK, I. ASBECK and C. WALSH. Assistance Magnitude Versus Metabolic Cost Reductions for a Tethered Multiarticular Soft Exosuit. Science Robotics, 2017, 2(2), 4416. DOI 10.1126/scirobotics.aah4416.

UC Berkeley Robotics & Human Engineering Laboratory [online]. [viewed 2021-06-02]. Available from: https://bleex.me.berkeley.edu/

QUINTO, L., S.B. GONÇALVES and M.T. SILVA. Systematic Review of Lower Limb Exoskeletons (in Portuguese). In: Proceedings of the 7th Portuguese Congress on Biomechanics. Guimarães: Department of Mechanical Engineering, Univ. do Minho, 2017, pp. 111-112. ISBN 978-989-20-7304-0.

WALSH, C.J., K. ENDO and H. HERR. A Quasi-Passive Leg Exoskeleton for Load-Carrying Augmentation. International Journal of Humanoid Robotics, 2007, 4(3), pp. 487-506. DOI 10.1142/S0219843607001126.

MOONEY, L.M., E.J. ROUSE and H.M. HERR. Autonomous Exoskeleton Reduces Metabolic Cost of Walking. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago: IEEE, 2014, pp. 3065-3068. DOI 10.1109/EMBC.2014.6944270.

GALLE, S., P. MALCOLM, S.H. COLLINS and D. de CLERCQ. Reducing the Metabolic Cost of Walking with an Ankle Exoskeleton: Interaction Between Actuation Timing and Power. Journal of NeuroEngineering and Rehabilitation, 2017, 14(1), 35. DOI 10.1186/s12984-017-0235-0.

COLLINS, S.H., M.B. WIGGIN and G.S. SAWICKI. Reducing the Energy Cost of Human Walking Using an Unpowered Exoskeleton, Nature, 2015, 522, pp. 212-215. DOI 10.1038/nature14288.

ETENZI, E., R. BORZUOLA and A.M. GRABOWSKI. Passive-elastic Knee-Ankle Exoskeleton Reduces the Metabolic Cost of Walking. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 104. DOI 10.1186/s12984-020-00719-w.

REDING, D.F. and J. EATON. Science and Technology Trends 2020-2040 [online]. Brussels: NATO Science & Technology Organization, 2020 [viewed 2021-10-10]. Available from: www.nato.int/nato_static_fl2014/assets/pdf/2020/4/pdf/190422-ST_Tech_Trends_Report_2020-2040.pdf

KEPE, M., J. BLACK, J. MELLING and J. PLUMRIDGE. Exploring Europe’s Capability Requirements for 2035 and Beyond [online]. 2018 [viewed 2020-02-03]. Available from: https://eda.europa.eu/docs/default-source/brochures/cdp-brochure---exploring-europe-s-capability-requirements-for-2035-and-beyond.pdf

WINTER, D.A. The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological. 2nd ed. Waterloo: University of Waterloo Press, 1991. ISBN 978-0-88898-105-8.

ULLMAN, D.G. The Mechanical Design Process. 4th ed. Boston: McGraw-Hill, 2010. ISBN 978-0-07-297574-1.

NICKEL, E., M. FERREIRA, F. FORCELLINI, C. SANTOS and R. SILVA. Multicriteria Model for Reference in the Informational Design Phase of the Product Development Process (in Portuguese). Gestão & Produção, 2010, 17(4), 707-720. DOI 10.1590/S0104-530X2010000400006.

CHEN, B., H. MA, L.-Y. QIN, F. GAO, K.-M. CHAN, S.-W. LAW, L. QIN and W.-H. LIAO. Recent Developments and Challenges of Lower Extremity Exoskeletons. Journal of Orthopaedic Translation, 2016, 5, pp. 26-37. DOI 10.1016/j.jot.2015.09.007.

DEŽMAN, M., T. DEBEVEC, J. BABIČ and A. GAMS. Effects of Passive Ankle Exoskeleton on Human Energy Expenditure: Pilot Evaluation. In: Advances in Robot Design and Intelligent Control. Cham: Springer, 2017, pp. 491-498. ISBN 978-3-319-49057-5.

DIJK, W. van, T. van de WIJDEVEN, M.M. HOLSCHER, R. BARENTS, R. KONEMANN, F. KRAUSE and C. KOERHUIS. Exobuddy - A Non-Anthropomorphic Quasi-Passive Exoskeleton for Load Carrying Assistance. In: 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob). Enschede: IEEE, 2018, pp. 336-341. DOI 10.1109/BIOROB.2018.8487794.

LEE, S., J. KIM, L. BAKER, A. LONG, N. KARAVAS, N. MENARD, I. GALIANA and C.J. WALSH. Autonomous Multi-Joint Soft Exosuit with Augmentation-Power-Based Control Parameter Tuning Reduces Energy Cost of Loaded Walking. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 66. DOI 10.1186/s12984-018-0410-y.

KHAZOOM, C., C. VERONNEAU, J.-P.L. BIGUE, J. GRENIER, A. GIRARD and J.-S. PLANTE. Design and Control of a Multifunctional Ankle Exoskeleton Powered by Magnetorheological Actuators to Assist Walking, Jumping, and Landing. IEEE Robotics and Automation Letters, 2019, 4(3), pp. 3083-3090. DOI 10.1109/LRA.2019.2924852.

Radial Spherical Plain Bearings [online]. [viewed 2021-03-02]. Available from: www.skf.com/uk/products/plain-bearings/spherical-plain-bearings-rod-ends/radial/productid-GE%25208%2520E

LEITE, M., J. FERNANDES, A.M. DEUS, L. REIS, M.F. VAZ. Study of the Influence of 3D Printing Parameters on the Mechanical Properties of PLA. In: Proceedings of the 3rd International Conference on Progress in Additive Manufacturing. Singapore: Nanyang Technological University, 2018, pp. 547-552. DOI 10.25341/D4988C.

Clinical Pulmonary Function Laboratories. ATS Statement: Guidelines for the Six-Minute Walk Test. American Journal of Respiratory and Critical Care Medicine, 2002, 166(1), pp. 111-117. DOI 10.1164/ajrccm.166.1.at1102.

ALTON, F., L. BALDEY, S. CAPLAN and M.C. MORRISSEY. A Kinematic Comparison of Overground and Treadmill Walking. Clinical Biomechanics, 1998, 13(6), pp. 434-440. DOI 10.1016/s0268-0033(98)00012-6.

Downloads

Published

10-04-2022

Issue

Section

Technical Information

Categories

How to Cite

Pratas Quinto, L. F., Pinheiro, P., Gonçalves, S., Ferreira, R., Roupa, I., & Tavares da Silva, M. (2022). Development and Functional Evaluation of a Passive Ankle Exoskeleton to Support Military Locomotion. Advances in Military Technology, 17(1), 79-95. https://doi.org/10.3849/aimt.01536