A Method for Object Classification in Aerial/Satellite Images with Incorporating Geospatial Information


  • Mykhailo Popov Scientific Centre for Aerospace Research of the Earth 0000-0003-1738-8227
  • M. Topolnytskyi Scientific Centre for Aerospace Research of the Earth of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • V. Pylypchuk Military-Diplomatic Academy named after Eugene Bereznyak, Kyiv, Ukraine




cognitive bias, geospatial information, multispectral image, object classification, subjective logic, uncertainty


Aerial and satellite multispectral images are important source of intelligence information. However, the object classification accuracy in those images for reasons such as camouflage, use of decoys, and others often turns out to be insufficient. The objective of the study is to develop a method for computer-aided analysis of aerial and satellite multispectral images, which allows improving classification accuracy. This objective is achieved by incorporating geospatial information (topographic, geodetic, about land cover types) into the classification process. As a mathematical basis of the method is used subjective logic of A. Jøsang. The effectiveness of the proposed method has been demonstrated by computer modeling using ArcGIS ModelBuilder tools.


WANG, G. and Q. WENG. Remote Sensing of Natural Resources. New York: CRC Press, 2014. ISBN 978-1-4665-5692-8.

MCRP 2-10B.5, Imagery Intelligence [online]. 2016 [viewed 2021-10-08]. Available from: https://www.marines.mil/portals/1/Publications/MCRP%202-10B.5%20GN.pdf?ver=2019-02-07-120201-527

HANNEVIK, T.N.A., K. ELDHUSETET, Ø.K. LENSJØ, D.J. WEYDAHL, R.B. OLSEN, B. van DEN BROEK, R. DEKKERAL, M. VAN PERSIE, H. NOORBERGEN, A. OOSTDIJK and R. VAN SWOL. Military Use of Space. WP1 Space-Based Geospatial Intelligence [online]. Norwegian Defense Research Establishment, 2017 [viewed 2021-10-15]. ISBN 978-8-2464-2993-9. Available from: https://publications.ffi.no/nb/item/asset/dspace:4251/17-16935.pdf

CLARK, M.R. Geospatial Intelligence: Origins and Evolution. Washington: Georgetown University Press, 2020. ISBN 978-1-64712-011-5.

JOSEPH, G. Building Earth Observation Cameras. New York: CRC Press, 2015. ISBN 978-1-4665-6647-7.

RACEK, F., T. BALÁŽ and P. MELŠA. Hyperspectral Data Conversion in the Case of Military Surveillance. Advances in Military Technology, 2015, 10(1), pp. 5-13. ISSN 1802-2308.

LILLESAND, T.M., R.W. KIEFER and J.W. CHIPMAN. Remote Sensing and Image Interpretation. 7th ed. Hoboken: Wiley, 2015. ISBN 978-1-1183-4328-9.

HEUER, Jr. R.J. and R.H. PHERSON. Structured Analytic Techniques for Intelligence Analysis. New York: CQ Press, 2011. ISBN 978-1-60871-018-1.

GADEPALLY, V.N.; B.J. HANCOCK, K.B. GREENFIELD, J.P. CAMPBELL, W.M. CAMPBELL and A.I. REUTHER. Recommender Systems for the Department of Defense and Intelligence Community. Lincoln Laboratory Journal, 2016, 22(1), pp. 74-89. ISSN 0896-4130.

BRYNIELSSON, J.; A. HORNDAHL, L. KAATI, C. MÅRTENSON and P. SVENSON. Development of Computerized Support Tools for Intelligence Work. In: Proceedings of the 14th International Command and Control Research and Technology Symposium [online]. 2009 [viewed 2021-10-01]. Available from: https://pdfs.semanticscholar.org/7fd7/143e9c1d443818d58880f4b12d85b83ed0fe.pdf

TECUCI, G.; L. KAISER, D. MARCU, C. UTTAMSINGH and M. BOICUET. Evidence-based Reasoning in Intelligence Analysis: Structured Methodology and System. Computing in Science and Engineering, 2018, 20(6), pp. 9-21. DOI 10.1109/MCSE.2018.2873852.

New Research Directions for the National Geospatial-Intelligence Agency: Workshop Report. Washington: National Academies Press, 2010. ISBN 978-0-3091-5865-7.

BRÉZILLON, P. Context in Problem Solving: A Survey. The Knowledge Engineering Review, 1999, 14(1), pp. 47-80. DOI 10.1017/S0269888999141018.

ROGOVA, G.L. and A.N. STEINBERG. Formalization of “Context” for Information Fusion. In: L. SNIDARO, J. GARCÍA, J. LLINAS and E. BLASCH, eds. Context-Enhanced Information Fusion. Cham: Springer, 2016, pp. 27-43. DOI 10.1007/978-3-319-28971-7_2.

CONTAT, M., V. NIMIER and R. REYNAUD. Request Management Using Contextual Information for Classification. In: Proceedings of the 5th International Conference on Information Fusion. FUSION 2002. Annapolis: IEEE, 2002, pp. 1147-1153. DOI 10.1109/ICIF.2002.1020942.

CONDESSA, F., J. BIOUCAS-DIAS, C. CASTRO, J. OZOLEK and J. KOVACEVIC. Classification with Rejection Option Using Contextual Information. In: 2013 IEEE 10th International Symposium on Biomedical Imaging. San Francisco: IEEE, 2013, pp. 1340-1343. DOI 10.1109/ISBI.2013.6556780.

CAYUELA, L., J.D. GOLICHER, J.S. Rey and J.M.R. BENAYAS. Classification of a Complex Landscape Using Dempster–Shafer Theory of Evidence. International Journal of Remote Sensing, 2006, 27(10), pp. 1951-1971. DOI 10.1080/01431160500181788.

MOMANI, B.A., P. MORROW and S. MCCLEAN. Fusion of Elevation Data into Satellite Image Classification Using Refined Production Rules. In: M. KAMEL and A. CAMPILHO, eds. Image Analysis and Recognition. ICIAR 2011. Lecture Notes in Computer Science. Heidelberg: Springer, 2011, pp. 211-220. DOI 10.1007/978-3-642-21593-3_22.

SHAFER, G. A Mathematical Theory of Evidence. Princeton: Princeton University Press, 1976. ISBN 978-0-6911-0042-5.

ALLEN, D.W. Getting to Know ArcGIS: ModelBuilder. Redlands: ESRI Press, 2011. ISBN 978-1-5894-8255-5.

OBERKAMPF, W.L., S.M. DELAND, B.M. RUTHERFORD, K.V. DIEGERT and K.F. ALVIN. Error and Uncertainty in Modeling and Simulation. Reliability Engineering and System Safety, 2002, 75(3), pp. 333-357. DOI 10.1016/S0951-8320(01)00120-X.

WHITE, R.A., A. ÇÖLTEKIN and R.R. HOFFMAN. Remote Sensing and Cognition: Human Factors in Image Interpretation. Boca Raton: CRC Press, 2018. ISBN 978-1-3510-4046-4.

DEVITT, S.K., T.R. PEARCE, T. PEREZ and P.D. BRUZA. Mitigating against Cognitive Bias when Eliciting Expert Intuitions. In: International Conference on Thinking [online]. Brisbane: Queensland University of Technology, 2016, pp. 1-6 [viewed 2020-10-01]. Available from: https://eprints.qut.edu.au/98542/1/Cognitive_bias_expert_options_Handout_20160802_skd.pdf

PRAVA, V. Identifying and Correcting Cognitive Biases in Subjective Probability Elicitation Surveys: Model Based Approaches [online]. Baltimore: Johns Hopkins University, 2016 [viewed 2020-10-01]. Available from: https://jscholarship.library.jhu.edu/bitstream/handle/1774.2/39698/PRAVA-DISSERTATION-2016.pdf

ZADEH, L.A. On the Validity of Dempster’s Rule of Combination [online]. Berkeley: University of California, 1979 [viewed 2020-10-01]. Available from: http://www2.eecs.berkeley.edu/Pubs/TechRpts/1979/ERL-m-79-24.pdf

JØSANG, A. Subjective Logic: A Formalism for Reasoning under Uncertainty. Cham: Springer, 2016. ISBN 978-3-3194-2337-1.

POPOV, M.O. М.V. ТOPOLNYTSKYI, O.V. TITARENKO, S.A. STANKEVICH and А.A. АNDREIEV. Forecasting Gas and Oil Potential of Subsoil Plots via Co-analysis of Satellite, Geological, Geophysical and Geochemical Information by Means of Subjective Logic. WSEAS Transactions on Computer Research, 2020, 8, pp. 90-101. DOI 10.37394/232018.2020.8.11.

SMETS, P. and R. KENNES. The Transferable Belief Model. Artificial Intelligence, 1994, 66(2), pp. 191-234. DOI 10.1016/0004-3702(94)90026-4.

JØSANG, A. The Consensus Operator for Combining Beliefs. Artificial Intelligence Journal, 2002, 142(1-2), pp. 157-170. DOI 10.1016/S0004-3702(02)00259-X.

DI, L. and B. KOBLER. NASA Standards for Earth Remote Sensing Data. In: International Archives of Photogrammetry and Remote Sensing [online]. Amsterdam: ISPRS, 2000, pp. 147-155 [viewed 2020-10-01]. Available from: https://www.isprs.org/proceedings/XXXIII/congress/part2/147_XXXIII-part2.pdf

DEZERT, J., D. HAN, Z. LIU and J.-M. TACNET. Hierarchical DSmP Transformation for Decision-Making under Uncertainty. In: 2012 15th International Conference on Information Fusion. Singapore: IEEE, 2012, pp. 294-301. ISBN 978-1-4673-0417-7.

JØSANG, A. A Logic for Uncertain Probabilities. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2001, 9(3), pp. 279-311. DOI 10.1142/S0218488501000831.

SUDANO, J.J. Pignistic Probability Transforms for Mixes of Low- and High-Probability Events. In: Proceedings of 4th International Conference on Information Fusion [online]. Montreal: Inffus, 2001, pp. 23-27 [viewed 2020-10-01]. Available from: https://arxiv.org/ftp/arxiv/papers/1505/1505.07751.pdf

BOSCH, K. van den and A. BRONKHORST. Human-AI Cooperation to Benefit Military Decision Making. In: Proceedings of the NATO IST-160 Specialist meeting on Big Data and Artificial Intelligence for Military Decision Making [online]. Bordeaux: S&T, 2018, pp. S 1-13 [viewed 2021-11-09]. Available from: https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/STO-MP-IST-160/MP-IST-160-S3-1.pdf

TECUCI, G., S. MECKL, D. MARCU and M. BOICU. Instructable Cognitive Agents for Autonomous Evidence-Based Reasoning. Advances in Cognitive Systems, 2019, 8, pp. 73-92. ISSN 2324-8416.

LANCE, M., D.A. GOLDFELD, A. TINGSTAD, S. LINGEL and E. GEIST. Technology Innovation and the Future of Air Force Intelligence Analysis: Volume 1, Findings and Recommendations. Santa Monica: RAND Corporation, 2021. ISBN 978-1-9774-0631-6.




How to Cite

Popov, M., Topolnytskyi, M., & Pylypchuk, V. (2022). A Method for Object Classification in Aerial/Satellite Images with Incorporating Geospatial Information. Advances in Military Technology, 16(2), 309–331. https://doi.org/10.3849/aimt.01484



Research Paper