Runway Excursions: Bearing Strength Control of Unpaved Areas
DOI:
https://doi.org/10.3849/aimt.01432Abstract
The paper deals with the Dynamic Cone Penetrometer application which is intended to work as a vital means to support the bearing strength evaluation over the vast unpaved airport areas. Having identified fundamental drawbacks, the authors proposed some refinements in the original methodology. These predominantly respect the needs of airport operation services. Specifically, the model based on fuzzy logic and two tables, exceptionally suitable for day-to-day applications, are proposed and tested upon the extensive data set acquired at four airports over the last four years.References
ES G.W.H. van. A Study of Runway Excursions from a European Perspective. [online]. May 2010. [viewed 2019-06-28]. Available from: https://skybrary.aero/bookshelf/books/2069.pdf
CICMANEC, L. and V. MAREK. Bearing Strength of Unpaved Airport Surfaces Optimization of Number of Measurements. In: Proceedings of the 7th Internation-al Conference on Military Technologies, ICMT’19. Brno: University of Defence, 2019, pp. 1-6. DOI 10.1109/MILTECHS.2019.8870107.
Annex 14 – Aerodromes – Volume I – Aerodromes Design and Operations. 8th ed. Montreal: International Civil Aviation Organization, 2018.
Airport Services Manual: Part 2: Pavement Surface Condition. 4th ed. Internation-al Civil Aviation Organization, 2002.
RANIERI, V., N. BERLOCO, D. D’AURIA, V. DISALVO, V. FEDELE, P. INTINI and P. COLONNA. Determination of Bearing Capacity of Cleared and Graded Ar-eas at Airports. Journal of Transportation Engineering, Part B: Pavements, 2021, 147(1), 04020086. DOI 10.1061/JPEODX.0000247.
CICMANEC, L., J. SAFRANKO and M. PETRASEK. Application of Altered Meth-odology for Bearing Strength Measurements of Unpaved Airport Surfaces. In: Proceedings of the 22nd International Scientific Conference Transport Means 2018. Kaunas: Kaunas University of Technology, 2018, pp. 336-341. ISSN 1822-296X.
WEBSTER, S.L., R.W. BROWN and R.W. WILLIAMS. Description and Applica-tion of Dual Mass Dynamic Cone Penetrometer [online]. Washington: Department of the Army. May 1992. [viewed 2019-05-03]. Available from: https://erdc-library.erdc.dren.mil/jspui/bitstream/11681/21565/1/IR%20GL-92-3.pdf
WEINTRAUB, D. Development of an Automated Airfield Dynamic Cone Pene-trometer (AADCP) Prototype and the Evaluation of Unsurfaced Airfield Seismic Surveying Using Spectral Analysis of Surface Waves (SASW) Technology [PhD Thesis] [online]. Gainesville: University of Florida, 1993. Available from: https://apps.dtic.mil/sti/pdfs/ADA281985.pdf
ASTM D6951/D6951M-09, Standard Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement Applications. West Conshohocken: ASTM In-ternational, 2009. DOI 10.1520/D6951_D6951M-18.
SCALA, A.J. Simple Methods of Flexible Pavement Design Using Cone Penetrome-ters. New Zealand Engineering, 1956, 11(2), pp. 34-44. ISSN 0028-808X.
ZABIELSKA-ADAMSKA, K. and M. SULEWSKA. Dynamic CBR Test to Assess the Soil Compaction. Journal of Testing and Evaluation, 2015, 43(5), pp. 1028-1036. DOI 10.1520/JTE20130256.
HASAN, M.M., M.R. ISLAM and R.A. TAREFDER. Correlating Dynamic Cone Penetrometer and Laboratory Resilient Modulus of Subgrade. In: Proceedings of the 8th International Conference on Maintenance and Rehabilitation of Pave-ments. Singapore: Research Publishing, 2016. ISBN 978-9-81-110449-7.
Planning and Design of Roads, Airfields, and Heliports in the Theater of Opera-tions-Airfield and Heliport Design: Field Manual No. 5-430-00-2/AFJPAM 32-8013, Vol. II. Scotts Valley: CreateSpace Independent Publishing Platform, 2013. ISBN 978-1-48-197203-1.
CICMANEC, L. and D. PETRASEK. Runway Excursions: Bearing Strength Meas-urement Concerns. In: Proceedings of the 2019 IEEE/AIAA 38th Digital Avionics Systems Conference. San Diego: IEEE, 2019. DOI 10.1109/DASC43569.2019.9081754.
Downloads
Published
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Users can use, reuse and build upon the material published in the journal for any purpose, even commercially.