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Abstract:  

Military equipment is highly specialized and integrates advanced technologies to oper-

ate reliably in complex environments. Light-emitting diodes (LEDs) are increasingly 

used in military systems due to their superior performance, long lifetime, and high relia-

bility, making their reliability critical to overall system effectiveness and combat 

capability. This study proposes an empirical framework for estimating LED reliability 

using accelerated reliability testing combined with statistical analysis, explicitly linking 

test conditions to actual operating conditions. The methodology follows a structured, 

stepwise procedure encompassing test design, data acquisition, and reliability estima-

tion. It is applied to LEDs subjected to frequent ON/OFF cycling, yielding robust 

estimates of the lifetime distribution, survival function, and cumulative hazard function. 
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1 Introduction 

Military technical equipment integrates high-density, high-tech systems to perform 
specialized tasks under extremely harsh conditions, including wide variations in tem-
perature, humidity, chemical exposure, mechanical stress, and radiation. To meet 
combat requirements, such equipment must comply with strict technical standards, 
ensuring high reliability, long-term stable operation, rapid response, maintainability, 
and minimal risk during missions [1, 2]. Consequently, the research and development 
of military systems are accompanied by comprehensive evaluation programs and rig-
orous reliability testing under conditions simulating actual battlefield environments 
[1, 3, 4], following international and military standards, such as [1–7]. 
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Light-emitting diodes (LEDs) are increasingly used in modern military equip-
ment due to their efficiency, longevity, durability, and ability to operate under harsh 
conditions. They serve as core lighting components in tactical lights, signaling sys-
tems, cockpit displays, night vision devices, optical navigation, and target recognition 
systems. Ensuring LED reliability directly affects the overall performance, availabil-
ity, and maintenance optimization of military equipment. In this study, we focus on 
LEDs as key components of military systems. 

Evaluating LED reliability is a critical challenge, especially since LEDs are dual-
use devices, blurring the boundary between military and civilian applications. A gen-
eral approach applicable to both domains is therefore necessary. Traditional methods 
for estimating LED reliability include mathematical, physics-based, and numerical 
techniques. While these approaches can provide useful insights, they often require 
deep understanding of underlying physical, chemical, and material processes and may 
carry significant uncertainty [8]. For example, Cu et al. [9] assessed reliability of 
LEDs in military vehicles based on the existing standard, while Kyatam et al. [10] and 
Tsai et al. [11] applied numerical simulations (ANSYS and OQB-LEDsim) to study 
degradation under varying operating conditions. 

Data-driven methods offer a highly accurate alternative by extracting reliability 
information directly from controlled test data. Testing under normal operating condi-
tions is realistic but impractical for long-life, high-reliability LEDs due to long 
durations and high cost. Accelerated testing (AT) addresses these limitations by ex-
posing devices to elevated stress conditions, such as higher temperature, increased 
current, compressed duty cycles, or faster switching, thereby accelerating degradation 
and reducing test time [12]. AT is typically classified into Accelerated Life Testing 
(ALT), which collects failuree-time data, and Accelerated Degradation Testing (ADT), 
which continuously tracks performance degradation. Existing standards provide guid-
ance for AT planning and execution. IEC 62506:2023 [13] outlines general 
methodologies, IES LM-80 [14] defines lumen depreciation measurement, TM-21 [15] 
specifies extrapolation for long-term lumen maintenance, and MIL-HDBK-217F [6] 
details reliability prediction for military electronic components. In AT, stress types 
and profiles are diverse, encompassing environmental and operational factors with 
step, ramp, constant and cyclic profiles [16]. Based on the applied stress, the relation-
ship between accelerated life and real operating life is typically modelled through life-
stress relationships such as the Arrhenius model, Inverse Power Law, or other physics-
informed models [17]. These models enable the extrapolation of test results under 
high-stress conditions to predict device reliability under normal usage. 

At this point, detailed analyses are required regarding (1) ATs for LEDs, includ-
ing test conditions, equipment, and collected parameters, and (2) methods used to 
estimate lifetime from ADT data. Herzog et al. [18] conducted ADTs on 312 high-
power LED modules under different thermal stresses and constant current based on 
LM-80 guidelines, collecting optical data and estimating Mean Time to Failure 
(MTTF) using the Arrhenius model. Meanwhile, Singh et al. [19] tested 40 OSRAM 
Yellow Dragon LEDs under combined temperature-humidity stress at 85 ℃ and 85 % 
RH in both ON and OFF conditions. A temperature-humidity chamber, current source, 
and spectroradiometer were used to monitor lumen degradation. In another aspect, 
Truong et al. [20] tested GaN LEDs at two high-temperature levels for 1 500 hours 
with a constant 350 mA current. A climate chamber, spectrometer, and IR camera 
recorded spectral intensity and surface temperature. A random diffusion model was 
then applied to estimate lifetime, and the results were compared with TM-21 predic-
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tions. In parallel, Choi et al. [21] stressed package LEDs at high temperature, with 
some in constant-ON mode and others in 60-s ON / 260-s OFF cycles. Brightness was 
recorded during cooling using a T3Ster system, while junction temperature was moni-
tored by IR camera. Ibrahim et al. [22] evaluated InGaN LED lamps under constant 
thermal stress using a thermal chamber, an IR camera, and an integrating sphere to 
record photometric parameters. Lifetime was estimated using a Gamma process and a 
Bayesian network. Vališ et al. [23] performed step-thermal ADT (60 °C → 70 °C → 
80 °C → 90 °C) while voltage was monitored and applied a stochastic diffusion model 
for lifetime prediction. A similar approach was used in [24] for medical LEDs. Wang 
et al. [25] designed ADTs for UVC LEDs stressed at 30 mA, where one group was 
irradiated with a 60Co γ-ray source (1.35 MeV), reaching a total 1 750 krad(Si) dose, 
enabling comparison of radiation-induced degradation. In addition, many ADTs have 
been conducted under different stress conditions to investigate lumen depreciation 
[26, 27], and several studies reflect real operation modes such as ON/OFF cycling [28] 
and PWM control [29]. 

The above analysis confirms the importance of reliability assessment and lifetime 
prediction for LEDs used in military applications. Reliability testing plays a central 
role in collecting degradation data and forms the foundation for data-driven predictive 
models. Existing standards provide general procedures for performing such tests. 
However, most studies focus only on applying standard AT protocols, where stress 
conditions are selected based on predefined stress types. Although some works con-
sider real operating modes, they often do not clearly justify the chosen test regime or 
demonstrate how it reflects actual field operation. These limitations indicate a lack of 
empirical, application-oriented testing frameworks that explicitly link test design, real-
world operating conditions, and data-based reliability estimation. Motivated by these 
gaps, the paper proposes an empirical approach to reliability estimation for LEDs used 
as military equipment. The main contributions are as follows: 

•  an empirical approach for constructing a reliability test regime that reflects real 
operating conditions of LEDs in military systems, including test setup, data col-
lection, and data processing,  

•  an ALT is performed using existing laboratory equipment, where we clearly 
justify the selection of stresses, operating modes, and test parameters, demon-
strating how they relate to real conditions, 

•  a statistical data-driven method for processing degradation data, estimating life-
time distribution, survival function and cumulative hazard function, and 
extracting useful information that can serve as the basis for technical assurance 
and maintenance planning. 

The remainder of this paper is organized as follows. Section 2 presents the exper-
imental approach for reliability estimation. Section 3 provides a detailed case study 
applying the proposed methodology. Finally, Section 4 summarizes the main conclu-
sions of this study. 

2 An Empirical Approach to Estimating the Reliability of LEDs 

In this section, we present an empirical approach for estimating the LED reliability. 
The overall flowchart of the proposed methodology is shown in Fig. 1. The approach 
is structured into three main phases: pre-test, test, and post-test. Each phase plays 
a critical role in lifetime estimation: the pre-test phase defines the test conditions, 
stresses, and monitoring parameters based on device specifications and operating con-
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ditions to ensure meaningful and relevant data; the test phase executes the accelerated 
lifetime or degradation tests, generating the necessary reliability data under controlled 
conditions; and the post-test phase involves statistical, data-driven analysis to process 
the collected data, extract degradation trends, and estimate lifetime parameters. For 
clarity, the methodology is presented as a sequence of specific steps within each 
phase. 

 

Fig. 1 Flowchart of the empirical approach for reliability estimation 

2.1 Pre-Test Phase 

The pre-test phase is essential in an experimental approach for lifetime estimation; 
because it ensures that the accelerated test conditions realistically represent the actual 
operating environment and produce meaningful reliability data. In this phase, infor-
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mation from datasheets, real operating conditions, standards, and expert knowledge is 
used to select the dominant stress factors and the corresponding stress mode. The cho-
sen stress must significantly impact degradation so that failures occur within practical 
test duration, while still preserving the real physical failure mechanisms. 

Based on the selected stress, suitable acceleration models, such as Arrhenius, 
Eyring, Coffin-Manson, or inverse power law models, are determined [17]. These 
models convert real usage conditions into equivalent accelerated conditions, allowing 
the test to be shorter but still statistically representative of field operation (e.g., con-
verting actual workload into equivalent test duty cycle or frequency). The relationship 
between the time under normal condition and the time under experimental condition is 
defined [17]: 

 U T Ft t A= ⋅  (1) 

where AF is the acceleration factor, which is calculated using various models such as 
Arrhenius, Eyring, Coffin-Manson, or inverse power law models depending on the 
type of stress, tU and tT are the operating times under normal condition and test. 

Another key task is defining the degradation parameters to monitor. In ADT, this 
is crucial because the monitored parameter serves as the device’s health indicator and 
directly reflects performance decline. This decision also determines the necessary 
measurement equipment and data acquisition setup. 

Finally, an appropriate test plan must be designed. For non-repairable products 
like LEDs, common test plans are used depending on whether the time or number of 
failures is the stopping criterion. These plans ensure statistical validity, allow estima-
tion of lifetime distributions, and provide enough data for model fitting and reliability 
prediction. Fig. 2 illustrates two test plans for unrepairable products, where n denotes 
the number of tested samples. The symbol U represents the action taken after a failure 
occurs, whereby the failed unit is removed from the testing process. The parameters τ0 
(planned test duration) and r0 (specified number of failures) define the criteria for 
terminating the test. 

                 

Fig. 2 Illustration of two test plans for unrepairable products 

In summary, the pre-test phase defines the stress conditions, acceleration model, 
monitored parameters, and test plan. These elements are necessary to generate reliable, 
representative, and statistically useful degradation or failure data for lifetime estimation. 

2.2 Practical Test Phase 

The practical testing phase focuses on executing the accelerated test according to the 
predefined plan. In this phase, several issues must be carefully controlled to ensure 
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data validity. First, the test setup must guarantee stable stress conditions, such as tem-
perature, current, humidity, or duty cycle, because fluctuations introduce uncertainty 
into degradation behavior. Second, the measurement system must be periodically cali-
brated to avoid drift, especially in long-term tests. Data sampling frequency is another 
important factor: low sampling may miss critical degradation events, while excessive 
sampling increases cost and noise. 

Environmental disturbances, component variation, and certain unexpected fail-
ures (e.g., catastrophic failures unrelated to the target degradation mechanism) may 
also occur and must be recorded or filtered. Additionally, aging of auxiliary equipment 
(e.g., drivers, power supplies, sensors, or thermal chambers) can affect the results and 
requires scheduled maintenance. Throughout the test, data must be continuously moni-
tored to detect anomalies, ensure reliability in acquisition, and to avoid data loss due 
to system interruptions. These considerations ensure that the collected data accurately 
reflects the degradation process and is suitable for subsequent lifetime estimation. 

2.3 Post-Test Phase and Reliability Estimation 

In the experimental approach for lifetime estimation, data collected during the testing 
phase must be processed using statistical, data-driven techniques to extract meaningful 
information about degradation and remaining useful life.  

In ALT, only discrete failure-time data are typically available. Therefore, a statis-
tical framework is required to estimate the reliability of the component based on these 
observed failure times. This forms an essential part of reliability engineering. First, the 
recorded failure times under stress conditions must be converted to equivalent times 
under normal operating conditions, using life-stress relationships such as those pre-
sented in Tab. 1. After the failure data are normalized, statistical methods are applied 
to model the underlying lifetime distribution of the LEDs. In this section, two core 
tasks will be carried out: (1) estimating the lifetime distribution of the LEDs, and (2) 
estimating the survival function and cumulative hazard function. 

These contents are inherently related; once the lifetime distribution is identified, 
both the survival function and hazard function can be analytically determined. Two 
major methodological approaches are commonly used in this analysis: (1) non-
parametric methods, which do not assume any predefined distribution, and (2) para-
metric methods, which assume that the failure times follow specific statistical 
distributions such as exponential, Weibull, lognormal, or gamma. 

Non-Parametric Methods for Reliability Estimation 

Non-parametric methods are appropriate when the underlying distribution of failure-
time data is unknown. In this study, we introduce two approaches for estimating the 
lifetime characteristics of LEDs: (i) Kernel Density Estimation (KDE) for estimating 
PDF, and (ii) Kaplan-Meier estimation for the survival function. In addition, the cu-
mulative hazard function is computed using the Nelson–Aalen estimator. 

KDE is a non-parametric technique used to estimate the PDF of a random varia-
ble when the underlying distribution is unknown or uncertain [30]. Given a set of 
failure-time observations ( )1 2, ,..., mL L L=L , the estimated density at a point � is com-
puted as the average contribution of kernels centered at each data point. The estimator 
is defined as: 
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where ( )f̂ y  denotes the estimated density at point l; m is the number of observations 
of L; h is the bandwidth parameter that controls the smoothness of the density estima-
tion; K(•) is the kernel function, which is typically a symmetric PDF; and Li represents 
each data point in the sample.  

In practice, two key factors influence KDE performance: (i) Kernel selection and 
(ii) Bandwidth selection. While several kernel functions exist, Gaussian kernels are 
widely used due to their smoothness and strong theoretical foundation [31]. Although 
the kernel shape affects the result, the bandwidth ℎ plays a significantly more critical 
role, as it determines the bias–variance trade-off and smoothness of the estimated 
density [31]. Common bandwidth selection methods include the rule-of-thumb ap-
proach, cross-validation, and the Sheather-Jones plug-in technique. However, KDE is 
only truly effective in the absence of censoring. When right-censored observations 
exist, KDE-based density estimation becomes biased unless specialized correction 
methods are applied. 

For datasets with right-censoring, the Kaplan-Meier (KM) estimator is a more 
suitable approach, as it does not require any distributional assumptions. Let 

1 2 ... kL L L< < <  denote the ordered failure times, di the number of observed failures at 
time ti, and ni the number of samples at risk just before time ti. The KM estimate of the 
survival probability is defined as [32]: 
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yielding a non-increasing, stepwise function that decreases only at observed failure 
times. The KM estimator provides an unbiased estimate of the survival function even 
in the presence of incomplete observations and is therefore widely applied in reliabil-
ity analysis of engineering components. 

Along with the survival probability, the cumulative hazard function is estimated 
using the Nelson–Aalen (NA) estimator. For the same ordered failure times ti, the 
cumulative hazard is computed as [32]: 

 � ( )
i

i

it t

d
H t

n≤
= ∑  (4) 

Unlike the multiplicative form of the KM estimator, the NA estimator accumu-
lates incremental hazard contributions additively. The estimate is monotonic and 
converges to the true cumulative hazard as the sample size increases. The survival 
function can also be recovered from the cumulative hazard function through: 

 ɵ ( ) � ( )expS t H t = −
 

 (5) 

offering an alternative, consistent representation of survivability. 
Both KM and NA methods are fully non-parametric and therefore independent of 

any assumed lifetime distribution. While the KM estimator directly provides survival 
probabilities, the NA estimator yields a smoother cumulative hazard representation, 
especially for large datasets. When used together, these estimators provide a compre-
hensive description of LED reliability under accelerated testing conditions, including 
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both survival likelihood and failure accumulation rate. 

Parametric Methods for Reliability Estimation 

In the parametric approach, the observed failure-time data are modelled using a suita-
ble theoretical lifetime distribution such as the Weibull, Lognormal, Gamma, 
Exponential, or Normal distribution. Representative distributions commonly used in 
reliability analysis are summarized in Tab. 1.  

Tab. 1 Some commonly used distributions [33] 
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The parameters of these distributions are typically estimated using Maximum 
Likelihood Estimation (MLE) or Bayesian inference. Once parameter estimates are 
obtained, goodness-of-fit tests and model selection criteria, such as the Anderson–
Darling (AD) test, Akaike Information Criterion (AIC), and Bayesian Information 
Criterion (BIC), are applied to verify that the chosen distribution accurately represents 
the reliability characteristics of the LEDs. 

The goodness-of-fit between the empirical failure-time data and a theoretical life-
time model is further evaluated using the AD statistical test. Unlike distance-based 
tests such as the Kolmogorov-Smirnov (KS) test, the AD test places greater emphasis 
on the tails of the distribution. This characteristic makes it particularly suitable for 
reliability studies, where early failures and late-life wear-out are of practical im-
portance. Due to its sensitivity to tail behavior and strong performance for small or 
moderate sample sizes, the AD test is widely recommended for lifetime modelling. 

For a sample of n ordered observations 1 2 ... nL L L≤ ≤ < , and assumed cumula-
tive distribution function ( )F ⋅ , the AD test statistic is computed as [34]: 
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A small value of A2 indicates that the observed data are closer to the assumed dis-
tribution, whereas a large value indicates poor fit. 

While the AD test evaluates the statistical agreement between the model and the 
data, AIC and BIC quantify the trade-off between goodness-of-fit and model complex-
ity. For a likelihood-based model with k estimated parameters and maximized 
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likelihood function LL, the criteria are defined as: 

 2 2lnAIC k LL= −  (7) 

 ln 2 lnBIC k n LL= −  (8) 

where n is the sample size. Lower AIC or BIC values indicate a better balance be-
tween fitting accuracy and parsimony. The AIC tends to favor more flexible models, 
whereas the BIC penalizes over-parameterization more strongly and is therefore more 
conservative. 

By comparing AIC, BIC, and AD test statistics among candidate distributions, 
such as the Normal, Lognormal, Weibull, Gamma, and Exponential, the most appro-
priate lifetime distribution can be selected for subsequent reliability assessment. Once 
the model is established, reliability metrics such as the survival function, hazard func-
tion, MTTF, and confidence intervals can be analytically derived. This parametric 
framework enables robust reliability estimation even when ALT provides only limited 
or highly accelerated information. 

3 Case Study 

In this study, an accelerated test was conducted on 20 high-power 10 W LEDs 
(700 lm, 90 °C) [35]. The key specifications of the LEDs are summarized in Tab. 2. 
Although these devices are commercial products, they satisfy typical military require-
ments, including long operational lifetime, high reliability, compact structure, high 
luminous output, and ease of replacement.  

Tab. 2 Parameters of LED 10W 700LM/90℃ [35] 

Parameters Values Units 

Luminous flux 700–800 lm 

Correlated Color Temperature 2 900–3 200 K 

Forward Voltage 9–11 V 

Maximum Forward Current 1 050 mA 

Thermal Resistance 12 ℃/W 

Junction temperature 115 ℃ 

Operating temperature −40 to +60 ℃ 

3.1 Experimental Set Up 

The assumed application is an interior lighting system of military vehicles or lighting 
systems in the barracks, where the typical operating temperature is +24 °C and fre-
quent ON/OFF switching occurs during missions. Preliminary analysis showed that 
ON/OFF cycling is one of the dominant factors influencing LED lifetime. Based on 
the expected working environment and switching behavior, an accelerated test was 
designed with thermal stress as the acceleration factor, and the Arrhenius acceleration 
model was selected as appropriate. Considering the manufacturer’s datasheet limits, 
the test temperature was set to +90 °C, approximately 10 °C below the maximum junc-
tion temperature and higher than maximum operating temperature. The LEDs were 
operated in a cyclic ON/OFF mode with a maximum driving current of 1 050 mA, 
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which corresponds to the rated operating current. Thus, the acceleration factor of the 
test is determined by the shortened form of the Arrhenius equation [17]: 

 
T U 90 24

10 10 10
F 2 2 2 97

T TT

A

−∆ −=
= = ≈  (9) 

We assume that the LEDs are switched approximately 15 times per day, with 
similar ON and OFF durations. This corresponds to an ON duration of 48 minutes in 
each cycle. Under the Arrhenius-based acceleration regime, the ON/OFF time in the 
accelerated test was shortened to 30 seconds per state, resulting in one switching cycle 
per minute. The complete test mode is shown in Tab. 3. Since the objective is to obtain 
lifetime data, the test was continued until all LEDs failed. In addition to recording 
failure times, forward voltage was monitored throughout the experiment and used as 
degradation data for additional analysis. 

Tab. 3 Experimental condition in ALTs for tested LED 

Parameters Values 

Current level (IT) 1 050 mA 

Temperature (TT) +90 ℃ 

Switching frequency in ALTs 1 time/min 

Operation time in each cycle 30 s 

Non-operation time in each cycle 30 s 
 

The experiment was carried out using a VC3-7034 thermal chamber to control 
the thermal environment. High-precision DC power supplies provided stable current to 
the LEDs. A high-sensitivity Agilent data acquisition system continuously recorded 
voltage signals. All equipment was controlled and monitored through a central com-
puter. The overall test rig is illustrated in Fig. 3. 

 

Fig. 3 Test rig for LED 10W 700LM/90 ℃ 
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3.2 Experimental Data 

We conducted the test and continuously monitored the forward voltage of the LEDs. 
Measurements were recorded every 5 min, providing a sufficiently large dataset for 
degradation analysis and reliability prediction. Tab. 4 illustrates a sample of the rec-
orded voltage data.  

Tab. 4 Example of the raw voltage degradation data of LEDs from ATs 

Time 
[min] 

Voltage [V] 
/LED1001 

Voltage [V] 
/LED1002 

Voltage [V] 
/LED1003 

... Voltage [V] 
/LED1020 

   0 8.6542454 8.7043258 8.6994052 … 8.6701461 

   5 8.6537288 8.7038502 8.6988722 … 8.6689570 

10 8.6535156 8.7036616 8.6987656 … 8.6684978 

15 8.6538436 8.7039322 8.6989706 … 8.6683420 

20 8.6541552 8.7042438 8.6992330 … 8.6685716 

… … … … … … 

 

To ensure the reliability of the measured LED voltage, we evaluated both the 
measurement uncertainty and the statistical characteristics of the recorded data. The 
measurement uncertainty is quantified following the Type B evaluation procedure 
recommended in JCGM 100:2008 [36], based on the technical specifications of the 
Keysight 34980A with the 34922A multiplexer module [37] employed for data acqui-
sition. The resulting standard uncertainty is 0.208 mV, corresponding to an expanded 
uncertainty of 0.416 mV (k = 2) at the maximum measured voltage (~9 V). This uncer-
tainty is negligible compared with the substantial voltage increases (typically tens of 
percent) that indicate LED malfunction [35]. We also performed both AD and KS tests 
to characterize data behavior. The results indicate that the measured voltage data do 
not follow standard theoretical distributions such as normal, Weibull, gamma, or 
lognormal. This behavior is expected in the experiments [38]. Nonetheless, these tests 
are used solely to assess data quality rather than to impose parametric assumptions.  

Based on the above assessment, a fully non-parametric analysis procedure is 
adopted, including moving-average smoothing [39], modified Akima cubic interpola-
tion [40], and At-Most-One-Changepoint detection (AMOC) [33] to detect data 
structural changes and identify failure. This approach does not assume any underlying 
data distribution, ensuring that the analysis remains valid even when the measured 
voltages deviate from standard theoretical models and is not affected by measurement 
uncertainty.  

Fig. 4 shows the voltage degradation curves of 20 LEDs until failure. The left 
plot displays the raw voltage trajectories, while the right plot shows the smoothed and 
outlier-filtered curves obtained using a moving-average method combined with Modi-
fied Akima cubic interpolation. 

Sudden voltage drops observed in the raw data (Fig. 4, left) are considered outli-
ers, primarily caused by measurement noise, random fluctuations, or transient effects 
associated with ON/OFF switching in testing condition of LEDs. These outliers do not 
reflect the actual long-term degradation of the LEDs and are therefore excluded from 
the smoothed trend to provide a more accurate representation of the degradation path. 
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In contrast, significant voltage increases correspond to structural changes in the data 
and are directly related to failure events [33]. Distinguishing between these two types 
of variations ensures that the smoothing process preserves meaningful signals for fail-
ure detection while filtering irrelevant noise. 

 

Fig. 4 Graphical plots of raw voltage degradation paths (left) and smoothed paths 

(right) using moving-average method and Modified Akima cubic interpolation 

 of tested LEDs 

From the degradation curves, it can be observed that LED failure is generally 
characterized by a sudden increase in forward voltage. This behavior is used as the 
degradation signature to detect failures. However, to determine the failure time more 
accurately and objectively, we applied a data-structure analysis based on the AMOC 
approach, specifically the AMOC-mean-var-mean-var method [33]. Tab. 5 reports the 
observed failure times obtained using AMOC, together with the equivalent failure 
times adjusted to normal operating conditions using the Arrhenius acceleration model. 
It should be noted that the failures identified here are complete failures, meaning that 
the LEDs stop functioning. The Arrhenius-adjusted lifetimes are considered as the 
effective lifetimes under normal conditions and are used in the subsequent analysis. 

Tab. 5 Failure time of LEDs in test and adjusted equivalent failure time in normal 

operating conditions using Arrhenius equation 

No. 
LED 

Failure time in 
ALT [h] 

Equivalent  
failure time [h] 

No. 
LED 

Failure time in 
ALT [h] 

Equivalent  
failure time [h] 

1 001 2 757.12 267 456.80 1 011 2 206.08 214 002.69 

1 002 2 186.40 212 093.61 1 012 3 141.12 304 707.05 

1 003 2 761.20 267 852.58 1 013 2 766.96 268 411.34 

1 004 3 023.04 293 252.60 1 014 2 332.08 226 225.43 

1 005 3 098.64 300 586.24 1 015 2 808.48 272 439.02 

1 006 3 049.20 295 790.27 1 016 1 864.08 180 826.68 

1 007 2 509.92 243 476.95 1 017 2 763.12 268 038.83 

1 008 3 054.00 296 255.90 1 018 2 734.08 265 221.78 

1 009 2 442.00 236 888.31 1 019 2 463.12 238 937.07 

1 010 3 137.04 304 311.26 1 020 2 635.92 255 699.69 
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3.3 Reliability Estimation 

In this section, the lifetime of LEDs, along with their survival and cumulative hazard 
functions, is estimated using both non-parametric and parametric methods described in 
Section 2.3, based on the failure time data in Tab. 5. For the non-parametric approach, 
Gaussian kernel with Sheather-Jones plug-in bandwidth selection is employed to esti-
mate the lifetime distribution using KDE, while Kaplan-Meier and Nelson-Aalen 
methods are applied to derive the survival functions and cumulative hazard functions. 
In the parametric approach, widely used distributions including Weibull, Gamma, and 
log-normal are fitted to the lifetime data. Parameters are estimated using MLE, and the 
goodness-of-fit is assessed through AD tests as well as AIC and BIC criteria. The 
survival and cumulative hazard functions are subsequently derived from the corre-
sponding CDFs and PDFs. 

Tabs 6 and 7 summarize the MLE parameter estimates and the results of good-
ness-of-fit evaluation, respectively. Figs 5 and 6 provide graphical representations of 
the lifetime CDFs, PDFs, survival functions, and cumulative hazard functions obtained 
from both non-parametric and parametric analyses. The results indicate that both ap-
proaches yield consistent and reliable estimates of LED lifetime and reliability 
metrics. Among the parametric models, the Weibull distribution demonstrates the best 
fit, as supported by AD test, AIC, and BIC values in Tab. 7. 

Tab. 6 Parameter estimation results of Weibull, Gamma and log-normal distributions 

for LEDs lifetime based on MLE 

Weibull Gamma Log-normal 

a b a b μ σ 

2.7496 × 105 9.6028 12.4618 0.1370 55.5443 4.6922 × 103 

Tab. 7 Goodness-of-fit results of the parametric lifetime models for LEDs  

using AD test, AIC and BIC 

Distribution Weibull Gamma Log-normal 

AD 0.4169 0.5184 0.5481 

AIC 476.02 479.01 479.75 

BIC 478.01 481.00 481.74 

C
D
F

P
D
F

 

Fig. 5 Graphical plots of CDF (left) and PDF (right) of lifetime using non-parametric 

and parametric methods 
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Fig. 6 Graphical plots of survival functions and cumulative hazard functions of LEDs 

using non-parametric and parametric methods 

Such reliability estimation is particularly important in practical applications, es-
pecially for military equipment where spare parts and replacements may be limited. 
Tab. 8 further provides critical operating times and corresponding failure rates of the 
tested LEDs, offering essential information for maintenance planning, stocking re-
placement components, and supporting operational readiness. 

Tab. 8 Critical operating times and corresponding failure rates of tested LEDs 

Failure 
probability 

Empirical 
[h] 

KDE 
[h] 

Weibull 
[h] 

Gamma 
[h] 

Log-Normal 
[h] 

0.05 196 460.1 172 924.5 201 806.3 205 891.7 204 961.2 

0.10 213 048.2 187 112.4 217 515.1 216 932.4 215 700.9 

0.25 237 912.7 210 427.8 241 500.1 236 262.9 234 916.8 

0.50 267 654.7 232 949.2 264 659.9 259 061.3 258 281.2 

0.75 294 521.4 249 350.0 284 469.9 283 282.0 283 969.3 

0.90 302 448.8 257 951.6 299 905.1 306 323.7 309 267.0 

0.95 304 509.2 260 705.2 308 237.4 320 685.6 325 472.1 

3.4 Discussion 

The experimental results and reliability estimation outcomes obtained in this case 
study demonstrate that the proposed approach provides accurate and robust estimation 
performance. The tests delivered not only failure observations but also continuous 
degradation data, enabling precise determination of failure times through data-
structure analysis methods, as presented in Section 3.2. It is also important to empha-
size the advantages of accelerated testing in reliability studies. A major benefit is the 
significant reduction in testing duration while still reproducing realistic operating 
conditions. In this study, the overall test period was shortened by approximately a 
factor of 100 compared with normal-use conditions, while preserving high-quality, 
long time-series data. However, accelerated testing requires appropriate equipment 
and a clear understanding of the actual operating environment to ensure meaningful 
stress selection and a suitable acceleration model. 

It can be observed that the lifetime distribution, survival function, and cumulative 
hazard function were estimated with high accuracy using both parametric and nonpar-
ametric statistical techniques, as illustrated in Figs 5 and 6. Additionally, the approach 
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provides practical information on operating time and corresponding failure severity 
(Tab. 8), which is essential for maintenance planning, repair scheduling, and spare-
part provisioning. 

Among the evaluated statistical models, the non-parametric nonlinear KDE 
method yields lower estimate performance, whereas the parametric models produce 
relatively consistent results. The Weibull distribution exhibits the closest agreement 
with the experimental data. Therefore, the Weibull distribution is the most suitable 
parametric model in this case. Nonetheless, a limitation of these approaches is that 
they rely on actual failure events; therefore, ALTs may still require long test durations. 
In some applications, ADT offers a more suitable alternative, as it enables reliability 
prediction even in the absence of failures and supports real-time condition-based esti-
mation, an increasingly important requirement in modern reliability engineering. The 
development of degradation-based predictive methods falls outside the scope of this 
paper and will be addressed in future work. 

4 Conclusions 

In this paper, we analyzed the reliability requirements of military equipment, focusing 
on LEDs as critical components. We reviewed methods for evaluating LED reliability 
and predicting their lifetime, highlighting the importance of reliability testing, particu-
larly accelerated testing, and data-driven approaches for modelling and prediction. We 
proposed an experimental methodology for LED reliability assessment, structured as 
a stepwise process that defines stress selection, test regimes, equipment, and data pro-
cessing strategies. 

To demonstrate the approach, an accelerated reliability test was conducted on 
LEDs that meet military requirements under realistic operating conditions and modes. 
Both degradation and failure-time data were collected, with failure times determined 
using advanced data analysis techniques. Parametric and non-parametric statistical 
methods were applied to estimate lifetime distributions, survival functions, and cumu-
lative hazard functions. The results also provided practical information on operating 
time and failure levels, supporting maintenance planning, inventory management, and 
operational readiness. 

Future work will extend accelerated testing to varied operating conditions and 
modes, with a focus on collecting degradation data and developing online, data-driven 
methods for real-time reliability estimation, a critical aspect for high-reliability mili-
tary applications.  
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