Advances in Military Technology \

»
Vol. 20, No. 2, 2025, pp. 565-576
I ISSN 1802-2308, eISSN 2533-4123 \

DOI 10.3849/aimt.01994 /

Considerations for Delay and Sum Beamformer
on a Multi-Core Processor

M. Prakash Narayanan'", G. Vijay Gopal', and R. Rajesh!

! Naval Physical & Oceanographic Laboratory, Kerala, India
2 Cochin University of Science & Technology, Kerala, India

The manuscript was received on 29 April 2025 and was accepted
after revision for publication as an original research paper on 11 December 2025.

Abstract:

This paper presents a real-time, scalable beamformer solution utilizing Intel multicore
processors for a Passive Surveillance Sonar (PSS) system. With larger arrays being
developed to address the complexities of the ocean environment, the demand to handle
high-bandwidth data in the beamformer has become essential. The time-domain delay-
and-sum beamformer is analyzed for a cylindrical array, and the best configuration is
selected for a simplified realization. The beamformer is demanding in terms of both
computation and memory. Considerations for developing an optimized implementation
on a multicore machine are discussed, along with the realization of a scalable solution.
The beamformer is evaluated for performance with arrays of varying complexities and
successfully meets real-time requirements. Finally, a solution for a PSS with a panoram-
ic 450-beam configuration, which has evolved based on this concept, demonstrates the
capabilities of the proposed approach.

Keywords:

sonar beamformer, multicore processing, sonar signal processing

1 Introduction

Noisy oceans, together with increasingly silent submarine designs, have led to the
development of larger and more complex sonar arrays [1]. This trend demands that the
beamformer handle massive amounts of data. With today’s multicore processors and
high-speed interfaces, compact and cost-effective systems are now within reach.

This work focuses on the design of a parallel and pipelined solution for a Passive
Surveillance Sonar (PSS) beamformer — scalable to a 7600-element array — using
readily available hardware that can be configured for different array sizes. With 10 G
Ethernet, data aggregation into a processor-based solution has become more feasible,

* Corresponding author: Naval Physical and Oceanographic Laboratory, 682021, Kerala,
India. Phone: +91 484 257 25 06, Fax +91 484 2424858, E-mail: prakashnm.npol@ gov.in.
ORCID 0000-0002-9167-3360.

566 DOI 10.3849/aimt.01994

enabling the implementation of a parallel/pipelined approach on Intel multicore pro-
Cessors.

1.1 Literature Survey

Several approaches to realizing beamformers for sonar and radar systems are available
in the literature. In [2], a combination of FPGA (Field-Programmable Gate Array) and
DSP (Digital Signal Processor) is proposed for a multibeam sonar. Data acquisition
and packet processing are performed on the FPGA, while the DSP executes beam-
former processing for an 8 x 8 planar array with 90 x 90 beams. An analysis of imple-
mentation aspects for achieving real-time performance in active sonar is presented.
However, scalability is limited by FPGA 1/Os, and the system has been shown to scale
only up to a 12 x 12 array. A radar processing solution using DSP with a Serial Rapid
I/O interconnect is discussed in [3], where careful interprocessor communication de-
sign is emphasized to maximize computational throughput. An FPGA-based high-
frequency sonar is described in [4], in which a 360-element array forming 360 beams
is implemented. In [5, 6], real-time sonar beamformer implementations on distributed
UltraSPARC computers are presented. Specifically, [6] describes a two-stage sonar
beamformer realized on 12-processor UltraSPARC workstations. Using process net-
works, the authors emphasize software portability and configurability. With MPI
(Message Passing Interface) [5], three different implementation optimizations are
explored, achieving 50 % efficiency compared to a straightforward design (with
91 and 181 beams). A GPU-based scalable beamformer is presented in [7], using
a 50-node Cray system with 10-core Intel Xeon processors and Nvidia Tesla K20X
GPUs, highlighting heterogeneous computing. The design achieves 40 % of CPU and
51 % of GPU performance. Beamformer optimization aspects on Intel-class multicore
processors are discussed in our previous works [8, 9]. This work extends those results
to beamformer processing solutions for high-bandwidth passive sonar systems, which
can be scaled, reconfigured, and realized on readily available multicore processors.

A scalable, reconfigurable design based on Intel multicore processors is pro-
posed. The development focuses on a computationally efficient beamformer for
a 7 600-element array forming 450 beams, with each beam computed using 3 200 sen-
sors. A complexity analysis of the beamformer is presented to guide the selection of an
optimized solution. By leveraging the characteristics of the cylindrical array, the
beamformer is reorganized to simplify computations and enable a parallel/pipelined
architecture, resulting in a scalable and reconfigurable design. Testing confirms both
the scalability and reconfigurability of the sonar beamformer.

Section 2 introduces the considered time-domain beamformer algorithms, com-
pares computational complexity, and identifies the one which is most suitable for solv-
ing the problem, along with details of the sonar hardware and real-time requirements.
Section 3 presents implementation considerations of the beamformer on a multi-core
processor. Section 4 discusses the results, and the conclusion is presented in Section 5.

2 Beamformer Analysis

2.1 Sonar Array Architecture

A cylindrical array with 40 elements per stave (in the vertical direction) and 190 ele-
ments along the bearing is considered, resulting in a 7 600-element array. For beamform-

Advances in Military Technology, 2025, vol. 20, no. 2, pp. 565-576 567

ing, 80 elements along the bearing are utilized (i.e., 80 x40 = 3200 sensors per beam).
The system requirement is to form 150 beams along the bearing and 3 beams in the ver-
tical direction. This results in a total of 450 beams, each computed using 3 200 sensors.

2.2 Delay and Sum Beamformer

This study considers the delay-and-sum (DAS) beamformer in both the time domain
(TD) and the frequency domain (FD). Passive Surveillance Sonar (PSS) is realized
after analyzing these algorithms, since a larger number of sensors and beams are in-
volved.

If si(n) is the signal received at i sensor of the array, p; is the position vector of
the i sensor, and w; is the weight applied, then the beamformer output can be written
as

N-1

b(n,¢,9): Zwisl. [n—l'i (¢,¢9)] (1)

i=

where

u
POz @)
= %(pxi cos@cos @+ p,; cosGsin g + p; sin 9)

is the delay incurred by the signal at the i sensor; p; = (pxi, Py, P2i), is the position
vector; u is the unit vector in the signal direction of arrival with bearing and elevation
angles (¢, 0), and c is the velocity of sound propagation. Eq. (1) gives the delay-and-
sum TD beamformer (TDBF) output in a specified direction (¢,). The frequency
domain representation of the beamformer is

N-1

B(k,$.0) = w, S;(k)e i @O 3)

i=0
where fi = k f; /K, K is the frequency bin and k frequency index.

The exponential term in Eq. (3) gives the frequency-dependent phase rotation
given to the signal s;(n) for a specific beam direction. Si(k) is the frequency domain
representation of the signal of i sensor found using the efficient FFT algorithm. To
get the beam time series b(n, @,), take the inverse FFT of the beam output, which is
the same as that found by Eq. (1). To generate a correct output, an adequate overlap is
recommended.

TDBF is an inherently broadband method and is effective for short pulses as well
as transient signals. It is possible to handle broadband signals in the frequency do-
main; however, it is computationally expensive. Time-delay computation in TDBF is
valid for all the frequencies in the band of interest. One needs to calculate the phase
values for each frequency bin, apply them, and then perform the inverse transfor-
mation to obtain the time signal in FDBF.

TDBEF requires signal oversampling for the time delays necessary for beamform-
ing, thereby demanding more computational resources and memory [10]. Over-
sampling, when replaced by interpolation schemes, makes the memory requirements
similar to those of FDBF. In FDBF, the signal can be sampled at the Nyquist rate, and
precise beamforming can be performed by applying the appropriate phase shift.

568 DOI 10.3849/aimt.01994

2.3 Computational Complexity Analysis

This section works out the Computational Complexity (CC) of each of the beam-
formers. There are 3 200 (Ny x Ny = 40 x 80) elements used for computing the beam in
a specified direction, where Ny and N, are the sensors in the elevation and bearing for
the beam. It is computationally expensive to compute a beamformer with all the ele-
ments taken together (N = 3200) for each of the Nz = 450 beams (Ng = 3 in elevation
and Ny = 150 in bearing). To reduce the computations, we combine the Ny elements in
staves to form Ng = 3 vertical beams for each of the Nx = 190 staves, called the verti-
cal beamformer (VBF). Horizontal beamformer (HBF) forms N4 beams for each of the
vertical beams, taking N, elements (VBF output).

Now the computational complexity will be split into VBF and HBF. For finer
time delay shifts in the time-domain BF, an interpolation filter of length Nr = 6 is
used, instead of oversampling by N; = 10 times. Oversampling increases the memory
and bandwidth requirements. This filter will compute all the required time delays for
the sensor data once it is fetched and can be reused for all the beams for which the
sensor might be used. Similarly, FFT in FDBF is computed only once per individual
sensor and reused wherever needed, eliminating re-computations.

The TDBF complexity can be calculated as follows. The number of multiplica-
tions (N,,) and number of additions (Na) for Eq.1 are as follows:

N,, =NINp +N =N (N, +1) “4)
N, =N(Np -1)+N -1 =N [N -1 =N N (5)

CC per beam is the sum of Eq. (4) and Eq. (5).
CCheam =N (2N +1) (6)

Hence CC for TDBF for all beams Eq. (6) to by multiplied by the number of
beams.

CCrp =Ny IN (2N, +1))

Now for the TDBF realized as VBF+HBF, we will be calculating the computa-
tional complexity. In Eq. (7), the beamformer is calculated once, and the interpolation
is carried out every time. If the interpolation operation is done only once and the
beamformer is split into VBF + HBF, there is scope for a reduction in computation. If
each sensor is interpolated N; times, Ny elements contributing to a beam, and the num-
ber of beams Ng in the vertical direction, N, staves, the computational complexity can
be calculated as:

CCrpos = 2Ny tN INg N, +N; N (2N =1] N, oN, (8)

The computational complexity of FDBF has two parts. FFT computation for all
sensors, which are common across all beams, requires NsN:Klog2(Nk) multiplications
and NsNglog»(Nk) additions. These are complex number multiplications and additions;
real multiplications will be 4 times, and real additions will be 3 times the above.
Therefore, the combined CC for the FFT of all Ng sensors is

CCrpr =4Ng(Ng /2)1ogy(Ng) +3Ng Ny log,(Ng) =5Ng Ny log,(Ng) (9)
FDBF involves phase-shifting the Nx/2 FFT bins with complex phase shift val-

ues. This, together with the window function, needs to be taken. Each beam has N
sensors, and Ng beams are formed. This takes Npg2NNk/2 = NpNNx multiplications and

Advances in Military Technology, 2025, vol. 20, no. 2, pp. 565-576 569

NBNNx/2-1=NpNNg/2 additions. These are complex operations. Each complex multi-
plication takes 4 real multiplications and 2 additions. Each complex addition is 2 real
additions. Hence, the CC for phase shift and add of FDBF (CCwa) is (4 + 2)-NpN-Nk
+ 2-Np'N-(Nk/2) = 6:Np-N-Ng + Np-N-Ng. That is to complete the FBDF the CC is as
follows.

CCya =TNy NNy (10)
Combining Eq. (9) and Eq. (10), we get the CC for FDBF as given below:
CCrpo =TNy N Ny +5Ng Ny log, (Ng) (11)

FDBF can be calculated as VBF + HBF, in which case the CC can be computed
as follows. Ng beams formed with Ny sensors each, with N, staves. Using Eq. (10) CC
for VBF will be 7N.NeNoNk. HBF: Ng beams are formed with N, sensors contributing
to a beam.

Using Eq. (10), CC of HBF will be 7NN, and the CC will be the sum of VBF,
HBF and the FFT for all sensors.

CCrpos =7 Ny (Ny Ny Ny +NyNy) +5Ng Ny log, (Ni) (12)

Tab. 1 summarizes the computational complexity (Floating Point Operations) for
the beamformers discussed. The CC for FFT-based methods are for epoch, whereas the
TD methods are per point. Compared to FDBF, TDBF is simpler in terms of computa-
tional requirements, and both give the same output/performance for a broadband sys-
tem. Fig. 1 shows the comparison of all beamformer types in Tab. 1 for different num-
bers of sensors used in the beamformer. The numbers in Fig. 1 are normalized to CC
per second and are hence comparable. It is observed that the TDBF with VBF fol-
lowed by HBF gives the best performance in all these cases. Hence, this paper will
further pursue TDBF with VBF and HBF as separate stages.

Tab. 1 Summary of computational complexity of different beamformer configurations

Method and Reference Computational Complexity Details
equation (Number of Operations)
TD, Eq. (7) NsN(2Nr +1) TD BF
TDOS, Eq. (8) 2N.NENoN; +NiNo(2Nr —1)+NsN, | TD BF with VBF & HBF,
interpolation only once
FDO, Eq. (11) TNBNNk +5NsNklog: (Nk) FD BF with FFT once
FDOS, Eq. (12) TNk(NxNENo FD BF with FFT once and
+NBNy)+5NsNklog2(Nk) VBF + HBF

2.4 A Scalable Hardware Architecture

Fig. 2 shows the proposed system architecture. The low-noise amplifier (LNA), fol-
lowed by an amplifier to provide the required gain for the analog-to-digital converter
(ADC), is realized on a modular printed circuit board (PCB). Each printed circuit
board (PCB) has up to 32 channels, with an FPGA sending the digitized data as a UDP
(User Datagram Protocol) packet over a 10G Ethernet. A synchronization signal is
used to synchronize all ADCs (Fig. 2). The signal processor is proposed on a multicore
Xeon processor. Once the high-bandwidth data from the signal conditioning circuits is
taken and synchronized, the signal processing function will be implemented in the
Xeon processor.

570 DOI 10.3849/aimt.01994

™)
o

9 FD

'

g e — — —*
> - -

E -~

]

3_102

£

o

¥} - - = =
o ED =FFFOffce ™ VBE;{-I—LEH:— - -
£ IDnter Ghee & VBH-+HBF

o

1000 2000 3000

Num Sensors

Fig. 1 Comparison of computational complexity by varying the number of sensors used
in the beamformer for different cases given in Tab. 1 (GFLOPS for 450 beams)

1T HMI
e E h Xeonli7
ola|a(s S — -
§§§§ £l co1 [co7
S g3 & [THLE cos
212(23| g ||cos| cos|
& |Fo(cos| c10
° co4| [c10
I @) | =
=3
Synch Signal Xaon @l
- L eon

Fig. 2 PSS configuration with scalable signal conditioning, processing,
and industry standard interfaces

Processing Elements: The proposed processing hardware is based on Intel pro-
cessors. Both 17 and Xeon are candidates; Xeon has more cores on a die and larger
cache memory. The solution is developed on a Xeon server-class machine; however, it
can easily be ported to any Intel machine.

Data Telemetry: A 10G Ethernet is proposed as the data telemetry backbone,
considering higher-bandwidth data. Ethernet is an industry standard and is readily
available. To enable easy scaling of the system, we propose using two networks.

Real-time Constraints: A packet is generated every f, = 500 us, with a sampling
time of 32 kHz. Batch processing of 2048 samples takes, tz = 64 ms. Therefore, the
real-time constraint (processing time) for the signal processor is

=64 ms (13)

proc

A Xeon D 16-core computer is used for processing, with the clock frequency
pinned to 1.5GHz. Xeon has a theoretical peak performance of
1.5 GHzx 32 x 16 = 820 GFLOPS, 32 being the single-precision FLOP/Hz. This im-
plies that the beamformer for the array of 7.6 k elements can be carried out in a Xeon-
based processing solution. However, the solution needs to account for the high amount
of data handled in the processor through a 10 G Ethernet interface.

Advances in Military Technology, 2025, vol. 20, no. 2, pp. 565-576 571

3 Realization of Beamformer on Multicore Processor

This section deals with software considerations for the utilization of the Xeon proces-
sor architecture. The application is coded using lightweight pthreads on the Linux OS.
To maximize performance, computationally intensive processing schemes are coded
using Intel Performance Primitives (IPP). The combination of pthreads and IPP is used
to maximally utilize the computational resources without compromising scalability.
Effective utilization of the cache maximizes beamformer performance. Analysis of
these considerations for optimizing the beamformer is presented in [7, 8, 10]. OpenMP
automates the threading schemes; however, an earlier study has shown that a pthread-
based implementation is better than OpenMP without compromising the scalability of
the application [8, 10].

3.1 Processor Architecture Considerations

The microarchitecture of Intel has a superscalar pipeline, SIMD instructions, and out-
of-order execution, along with branch prediction and speculative execution. This is
enabled through the hardware and compiler of the Intel processors. The most im-
portant feature of the Xeon D, of interest in signal processing applications, is the
AVX-2 vector units. This vector unit can perform a Fused Multiply-Add (FMA) op-
eration, which specifically performs a multiply-and-accumulate operation. The su-
perscalar architecture exploits Instruction-Level Parallelism (ILP) to the maximum,
with the Xeon D, which is based on the Broadwell family, featuring a 14-stage pipe-
line. This enables the processor to perform branch prediction, out-of-order execution,
and speculative execution. This is managed by the hardware at runtime, and Intel’s
Dynamic Scheduling Technology handles this operation. The dynamic scheduler
checks dependencies of the instructions, takes necessary actions to rename registers,
places them in the queue in the order of operand availability, tracks data dependencies
for out-of-order execution, and manages the in-order retirement of instructions to en-
sure consistent results. This maximizes CPU utilization, parallelism, and hides the
latency in execution.

The Xeon D 1 500 class processors have L1, L2, and L3 caches. The Broadwell
family L1 cache is dedicated to each core in the processor. L1 is a low-latency
memory and has a few tens of kB/core available exclusively (32 kB each for instruc-
tion and data per core), which varies depending on the specific processor. Mid-level
cache (L2) is also dedicated to individual cores, but with slightly more latency than
L1, and larger in size (256 kB/core). Low-Level Cache (LLC or L3), with higher la-
tency, is shared by all processor cores. This is larger than L1 and L2 (usually 1.2 to
2.5 MB/core) and is faster than the off-chip DDR. The memory hierarchy is designed
to get the maximum performance out of the computational capabilities of the cores and
the associated AVX engines. In a shared memory architecture realized using a Xeon
processor, inter-core communication can easily be achieved using the L3 cache, as this
is common to all cores. Beamformer data partitioning critically affects the perfor-
mance of the code in each processor. Hence, careful application design is mandated for
high-performance real-time systems.

Memory alignment to 32-byte boundaries for AVX and 64-byte boundaries for
AVX-2 improves the speed of access and vectorization. An inline assembler, though
the least portable option, offers complete control over vectorization. Intrinsics consist
of a collection of data types and internal compiler functions that directly correspond to
processor instructions, with vector registers being allocated by the compiler. Using

572 DOI 10.3849/aimt.01994

extensions such as Intel Array Notation, Intel ISPC, Apple Swift SIMD, and libraries
including C++17 SIMD types improves execution speed. Intel compilers provide ease
of use and high code portability. Signal processing algorithms such as FIR filters and
FFTs require multiply-and-accumulate operations. The AVX-2 hardware of the Xeon
D processor provides Fused Multiply Accumulate (FMA) instructions for floating-
point (double and single precision) and integer numbers. Depending on the precision,
the SIMD engine can perform these operations on multiple data points simultaneously,
providing efficient code vectorization. A careful analysis of the algorithm can reveal
opportunities for vectorized processing of signal-processing functions [11]. Vectoriza-
tion is essential for achieving better performance in beamforming.

3.2 Beamformer Algorithm

VBF followed by HBF reduces computational complexity (Section 2.3). Separate
threads are created to carry out the vertical beams in six data sets, partitioned without
overlap. VBF outputs are separately assigned to three threads and do not require any
data overlap. Splitting the beamformer into VBF and HBF removes the requirement
for sensor data overlap, reducing data movement from memory. Additional beams, if
required, can be formed by scaling the system. This also improves data availability in
the cache, accelerating execution and enhancing computational efficiency. A previous
study [12] shows a 70% increase in the Fused Multiply-Add (FMA) operations used in
beamformer computation.

3.3 Threading Options

The HBF and VBF are coded with OpenMP and pthread threads to compare efficien-
cies. The OpenMP version schedules the beamformer threads automatically, which is
an easy way to realize parallel code from a user perspective. However, in the pthread-
ed version, users must split the beams (and hence computations) to balance the load
across processing cores. The beams are scheduled in two different ways (Fig. 3) to
study the effect of memory access. In Fig. 3b, alternate beams are given to different
threads, effectively making memory accesses to consecutive locations by different
threads. This can lead to much more memory access than the second scheme. In Fig.
3a, consecutive threads are given a batch of beams to be processed. This makes, as
seen from the results, the memory access more ordered for the cache controller.

N

(b)| Br | B2 ——=+ Bk | Bt | Bz ==+ Bax |Bawer |Bakez = — o Bax |Basker |Bawez = — o Bax

(@| Br [B | Bs | Bs | Bs | Bs [Br [Bs b—=———————— Baks | Bakz | Bakr | Bak
Beams 1 fo Ne (NB = 4k)}—— | Thread 1 | | Thread 2 | ‘ Thread 3 | | Thread ¢ ‘/

Fig. 3 Beam partitioning across threads in pthread scheme.

4 Results and Analysis

To study beamformer performance with OpenMP and pthread, a single-threaded ver-
sion without any parallelization is used as a benchmark (Fig. 4). The pthreaded version
is configured with both options shown in Fig. 3 for the beam computational task parti-

Advances in Military Technology, 2025, vol. 20, no. 2, pp. 565-576 573

tioning. OpenMP is configured to manage the workload by itself, with a maximum
limit on core usage specified to make it comparable with the pthread version.

Single
Core

H o

Fig. 4 Test setup for evaluation of threading schemes

Fig. 5 gives the performance figures for different data block lengths (512, 1024,
2048, 4096, 8 192) and threading schemes. There is an increase in performance with-
block length. Numbers in brackets on the x-axis (p, q) indicate the number of cores
used (p) and the beam stride (q). An increase in block length could lead to data starva-
tion. The multi-threaded beamformer running on four cores performs better, as multi-
ple cores are utilized. With simpler coding, OpenMP closely follows the custom
pthreads. More effort in fine-tuning increases utilization, as seen in pthread versions
with better GFLOPS. This implies that the different levels of memory are better uti-
lized with block processing, which is separated in shared memory. The pthreaded
version with beams processed in groups performs better.

180 -
160 -

140- =

—

N

(=]
T

GFLOPS
=
N B () [e>] o
o o o o o

0 OpenM (4,x} Pthread (4,1) Pthead(4, 50) Pthread(1,1)
Fig. 5 Performance figures for the different threading schemes

The array configuration discussed in Section 2.1 is used to study the beam-
former’s real-time behavior and scalability. The system scalability is demonstrated for
the beamformer configured for two array complexities: a 1520-element array and
a 7600-element array. Both cases are run on a workstation (WS)-class Xeon Gold
machine with a theoretical performance of 96 GFLOPS/core and an embedded Xeon-
based single-board computer (SBC) with a theoretical performance of
48 GFLOPS/core. The timings are tabulated (Tab. 2) with the beamformer configured
with 2-, 4-, and 6-point interpolators. The beamformer complexity increases with the
interpolator. Similarly, the workstation-class machine is superior, with AVX-512 per-

574 DOI 10.3849/aimt.01994

forming better than the SBC. Processor timers are used to measure the timings. The
system is running Linux OS, and hence, variability in the execution timings of threads
is expected.

The timings in Tab. 2 are averaged over a large number of samples taken with the
beamformer receiving input data continuously. A Linux-based OS is used, which can
introduce variance in the performance timings. For one of the cases in Tab. 2, a histo-
gram is plotted in Fig. 6. As observed, the timings exhibit a spread caused by the oper-
ating-system-based system. In Section 2.4, the real-time constraints required for the
system are introduced. In Eq. (13), the time for completion of the beamformer task is
calculated as 64 ms. The results show that, for all considered beamformer and array
complexities, the system satisfies the real-time requirements.

800 T T T T

B [=2]
(=] [=]
(=] (=]

Occurance
[\
o
o

3.5 4 4.5 5 5.5 6
VBF Time (ms)

200

150

100

50

10 10.5 11 11.5 12 12.5 13 13.5 14
HBF Time (ms)

Fig. 6 Histogram of VBF, HBF timings for Case I in Tab. 2

Tab. 2 Timings of different array and beam-former complexities
in multiple hardware platforms

H/W INTRP | VBF | HBF
Case | 2 4.1 21.6
(1520) 4 4.4 253

SBC 6 4.9 33.2
Case | 2 4.4 11.7
(1520) 4 4.9 14.2

WS 6 4.4 14.0
Case 11 2 18.1 21.7
(7 600) 4 20.5 26.6

SBC 6 23.8 37.0
Case 11 2 17.2 13.2
(7 600) 4 18.0 15.2

WS 6 17.6 16.2

Advances in Military Technology, 2025, vol. 20, no. 2, pp. 565-576 575

5 Conclusion

This work presents a comprehensive design method for real-time processing of a time-
domain DAS beamformer with a large number of sensors, implemented on multicore
processors. The computational complexity of the algorithms is analyzed for different
cylindrical array configurations. Factors influencing beamformer performance on
multicore architectures are discussed, and the effects of various threading schemes are
evaluated. The results show that a pthread-based implementation delivers superior
performance. The beamformer meets real-time requirements in two scenarios: arrays
with 7600 and 1520 elements, each forming 450 panoramic beams. These findings
demonstrate the system’s scalability across arrays of different sizes and beamformer
complexities.

Acknowledgement

Sincere thanks to the Director, NPOL, for granting permission to publish this work,
which is carried out as part of the research done with the Department of Electronics,
Cochin University of Science and Technology (CUSAT), Kochi, India.

References

[1] BELL, T.G. Probing the Ocean for Submarines. Bloomington: Peninsula Pub-
lishing, 2011. ISBN 0-932146-26-0.

[2] TIAN, H., S. GUO, P. ZHAO, M. GONG and C. SHEN. Design and Implementa-
tion of a Real-Time Multi-Beam Sonar System Based on FPGA and DSP. Sen-
sors, 2021, 21(4), 1425. DOI 10.3390/521041425.

[3] KLILOU, A., S. BELKOUCH, P. ELLEAUME, P.L. GALL, F. BOURZEIX and
M.M. HASSANI. Real-Time Parallel Implementation of Pulse-Doppler Radar
Signal Processing Chain on a Massively Parallel Machine Based on Multi-Core
DSP and a Serial RapidIO Interconnect. EURASIP Journal on Advances in Signal
Processing, 2014, 2014, 161. DOI 10.1186/1687-6180-2014-161.

[4] WANG, J. and K. LIU. High Frequency Active Sonar Real-time Signal Pro-
cessing System Based on FPGA. In: IEEE International Conference on Signal
Processing, Communications and Computing (ICSPCC). Qingdao: 1IEEE, 2018.
DOI 10.1109/ICSPCC.2018.8567799.

[5] GEORGE, A.D., J. MARKWELL and R. FOGARTY. Real-Time Sonar Beam-
form-Ing on High-Performance Distributed Computers. Parallel Computing,
2000, 26(9), pp. 1231-1252. DOI 10.1016/S0167-8191(00)00037-5.

[6] ALLEN, G.E. and B.L. EVANS. Real Time Sonar Beamforming on Workstations
Using Process Networks and POSIX Threads. IEEE Transactions on Signal Pro-
cessing, 2000, 48(3), pp. 921-926. DOI 10.1109/78.824694.

[7] SAROEFEEN, C and P. GILLETT. A High Performance Parallel and Heterogeneous
Approach to Narrowband Beamforming. IEEE Transactions on Parallel and DIs-
tributed Systems, 2016, 27(8), pp. 2196-2207. DOI 10.1109/TPDS.2015.2494038.

[8] NARAYANAN, M.P.,, G.V. GOPAL and R. RAJESH. Accelerating Performance
of a Real-Time 2D Delay-Sum Beamformer on General Purpose Processors. In:
IEEE International Symposium on Ocean Technology (SYMPOL). Kochi: IEEE,
2021. DOI 10.1109/SYMPOL53555.2021.9689448.

576 DOI 10.3849/aimt.01994

[9] NARAYANAN, M.P,, G.V. GOPAL and R. RAJESH. Design and Implementa-
tion Considerations for a 3D Beamformer on State-of-the-Art Multicore Proces-
sors. In: IEEE OCEANS 2022. Chennai: IEEE, 2022, pp. 1-7. DOI 10.1109/
OCEANSChennai45887.2022.9775501.

[10] JAECKEL, O. Strengths and Weaknesses of Calculating Beamforming in the
Time Domain. In: /% Berlin Beamforming Conference. Berlin: BeBeC, 2006.

[11] MARTINEZ-NIETO, D. et al. Digital Signal Processing on Intel Architecture.
Intel Technology Journal, 2009, 13(1), pp. 122-145. ISSN 1535-864X.

[12] NARAYANAN, M.P., G. VIJAYGOPAL, and R. RAJESH. A High-Performance
Parallel Approach to Delay Sum Beamformer in a Homogeneous Multicore Envi-
ronment. Defense Science Journal, 2024, 74(5), pp. 755-762. DOI 10.14429/
dsj.74.19505.

