
Advances in Military Technology
Vol. 20, No. 1, 2025, pp. 107-122

ISSN 1802-2308, eISSN 2533-4123
DOI 10.3849/aimt.01943

 

 

 

 

 

 

 

Scheduling Techniques for Real-Time Systems 
for Defense Applications on Multicore Processors  

P. Balakrishnan1*, M. Rajesh2 and R. Rajesh3 

1 NPOL, DRDO, Cochin University of Science & Technologies, Kochi, Kerala, India 
2 National Institute of Electronics & Information Technology, Calicut, Kerala, India 

3 NPOL, DRDO, Kochi, Kerala, India 

The manuscript was received on 19 November 2024 and was accepted  
after revision for publication as a case study on 21 April 2025. 

Abstract:  

The real-time scheduling of tasks of any application software is an important require-

ment in defense applications. This paper explains partitioning and scheduling techniques 

in the real-time implementation of any defense system on embedded multicore proces-

sors with Linux as the operating system. A typical sonar system is considered as the 

reference to elaborate partitioning and scheduling techniques. This can be extended to 

any defense applications like radars, missiles, etc. This paper describes the Partitioned 

Earliest Deadline First (PART-EDF) scheduling algorithm integrated into LITMUSRT 

real-time Linux kernel to enhance task schedulability. The proposed system partitions 

computationally intensive, periodic operations like filtering, beam forming, target classi-

fication, etc., and sporadic operations like input and control functions onto different 

clusters on the multi-core processors.  

Keywords:  

EDF, sonar, WCET, LITMUSRT, ADC, beamforming 

1 Introduction  

The paper discusses the partitioned adaptive Earliest Deadline First (PART-EDF) 
scheduling with adaptive EDF scheduling policy for the realization of real-time signal 
processing tasks for applications like sonars, radars, etc., on multicore processors. 
With the availability of multicore processors having huge computational power, the 
signal processing functions of complex applications like sonars, radars, etc., are im-
plemented on multicore processors. This paper describes the partitioning and 
scheduling techniques regarding the implementation of a typical sonar signal pro-

 
* Corresponding author: Naval Physical and Oceanographic Laboratory, Defence Research 

and Development Organization, Kochi, Kerala, 682021, India. Phone: +91-9447 41 42 45, 

Email: bala.hema.bala@gmail.com. ORCID 0009-0003-0188-8646.  



108 DOI 10.3849/aimt.01943
 

 

cessing on any standard multicore. The partitioning and scheduling techniques ex-
plained can be extended to other applications like radar, missiles, etc.  

Sonars are considered the eyes and ears of any underwater platform, especially 
submarines and hence, critical equipment. The submarines typically have integrated 
sonar suites consisting of multiple sonars to achieve better detection performance in 
different scenarios. In the past, nearly two decades back, signal processing for sonar 
systems was realized on digital signal processors from manufacturers like Analog 
Devices, Texas Instruments etc. Now, with the advancements in VLSI technology, 
multicore processors from various sources, especially Intel, are available which can 
meet the real time requirements of the sonar systems, radars etc. Embedded Multicore 
processors with multiple cores, with hyper-threading capability, and with Linux as the 
operating system are currently used in defense applications. Linux being an open 
source OS has a lot of advantages in the realization of systems. But to meet the real 
time requirements, the application developer, in the absence of good scheduling tech-
niques, has to go through several iterations during software development so as to 
achieve the critical deadlines of the various tasks of the application software.  

This paper explains the partitioning schemes and the scheduling techniques for 
realizing a typical complex real time signal processing system of a sonar system on 
any multicore processor with Linux as OS. The task partitioning techniques and the 
modification/improvement in the existing EDF scheduler in Linux is also explained in 
detail. These techniques lead to efficient utilization of the multicore processors, minia-
turization of systems leading to enhanced reliability and low power consumption. 

2 Literature Review 

Many challenges have been addressed regarding the dynamic scheduling of real-time 
applications over multicore platforms, with partitioned EDF [1-6] as one of the main 
techniques enabling predictable execution of tasks. Many authors, such as Saranya and 
Hansdah, in their research work done in the year 2015 have shown that Dynamic parti-
tioning provides the right level of tasks to right cores as per their demand, hence 
optimizing the available mode of cores [1]. Subsequent work by Han, Cai and Zhu in 
2018 discusses the resource-aware partitioning for heterogeneous systems where the 
cores are not homogeneous in their nature [2]. Akram et al. (2019) discuss an inter-
task affinity-aware allocation algorithm that partitions tasks based on several factors to 
reduce the worst-case execution time [3]. In Xu et al. (2019), a holistic cache and 
memory bandwidth algorithm for multi-core real-time systems is discussed [4]. Ma et 
al. (2021) elaborates the partitioning of shared resource in real-time systems [5]. LIT-
MUSRT was developed as a test-bed for evaluating multiprocessor scheduling solutions 
[6, 7]; Calandrino et al. (2006) presented LITMUSRT as a benchmark for evaluating 
real-time schedulers. Stevanato et al. (2021) gives a detailed evaluation of adaptive 
partitioning of tasks in Linux [8]. These scheduling techniques are applicable to com-
plex real-time systems used for defense applications like sonar and radar. Several 
research works have taken place in scheduling techniques for real-time systems on 
multi-core processors [9, 10]. A sonar array processing implementation based on mul-
ti-core processors is elaborated by Li et al. (2012) [11]. Stepping further, the new 
research is more oriented in energy-efficient and mixed critical systems. Digalwar, 
Gahukar and Mohan have developed energy efficient scheduling on multi-core proces-
sors [12] in their research work. Heterogeneous multi-core processors with the same 
instruction set architecture integrate complex high-performance big cores with power 



Advances in Military Technology, 2025, vol. 20, no. 1, pp. 107-122 109
 

 

efficient small cores on the same chip. [13] proposes a heterogeneous fairness-aware 
energy efficient framework to provide energy efficient scheduling. 

3 Typical Sonar Signal Processing System 

The paper discusses the partitioning and scheduling techniques [14, 15] used for real-
izing a typical sonar signal processing system. Partitioning techniques are arrived at 
the basis of the analysis conducted on the systems developed on multicore processors 
[16] and design requirements. The context diagram of any sonar signal processor is 
given in Fig. 1 below. 

 

 

 

 

 

 

 

 

 

Fig. 1 Context diagram of a typical Passive Sonar Signal Processor 

The function of a typical passive sonar system includes detection, tracking, spec-
trum processing, classification etc. of multiple targets. Sonar signal processor receives 
digitized data from the data acquisition system. Data acquisition of a typical sonar 
system having an array of 5 000 sensors, each sensor sampled at 50 kHz using 24-bit 
sigma delta ADC outputs data at the rate of 1.2 lakhs bits in every 20 microseconds. 
All the signal processing blocks like detection, beamforming, tracking, spectrum pro-
cessing etc. shown in Fig. 2 have to be realized in software. The processing on each 
sample has to be strictly completed in every sample period. Normal block data pro-
cessing is done and hence the time available for processing will be the data collection 
time for a block of data. 

 
Fig. 2 Typical Passive Sonar Signal Processing System 

Input Data 
for sensor 

array 

Processed 
Data 

Control 
Data 

Sonar Signal  

Processor 



110 DOI 10.3849/aimt.01943
 

 

4 Semi-Partitioned Scheduling 

In any sonar signal processing system, three categories of data viz. input data, control 
data and processed data is handled by the signal processor as shown in Fig. 1. The 
input data from data acquisition is handled by the input tasks, the processed data is 
handled by output tasks and the control of the system as selected by the operator is 
handled by the control task of the application software. As shown in block diagram in 
Fig. 2, the input to each block is from the previous blocks, and hence, various pro-
cessing tasks are to be in sync with the input data received from the data acquisition 
system. However, the control tasks are asynchronous; the computational requirement 
is to collect the control parameters and update the pre-defined variables that will be 
used by the processing tasks. 

For realizing every block in the diagram given in Fig. 2, multiple cores will be 
required. The major functions involved in passive detection are Beamformer, Detector, 
Panoramic Spectrum processing, Tracking, spectrum processing of detected targets, 
Auto Contact Designation System (ACDS), Auto Line Detection System (ALDS) and 
Audio Processor. All these processing tasks include computationally intensive func-
tions like Fast Fourier transforms, matrix inversions, filters etc. that require huge 
computational power proportional to the number of sensors of the array. The different 
tasks in any sonar system can be categorized as input reception, controller, signal pro-
cessing tasks and processed data outputting task. Each task has to completed within 
the interval of repetition of the task. Extreme care has to be taken to collect all the data 
from the data acquisition without any miss. The typical data rate of the input data will 
be more than 1.2 Gbps for a sensor array having 1 500 sensors sampled at 32 kHz. The 
input data will be received in small chunks over Ethernet and the data reception pro-
cess is initiated by interrupts.  

For optimal scheduling, the total CPU utilization U on each core must satisfy: 

 i

ii

C
U

T
=  (1) 

where    

Ci: the worst-case execution time of task i, 

Ti: the task period or inter-arrival time. 
In a typical system, input tasks are periodic and occur at a higher frequency than 

processing tasks, as input data is received in small packets. Control tasks are sporadic 
in nature and to be addressed immediately. In such situations to avoid misses, input 
tasks & sporadic tasks like control tasks are given the highest priority. Hence these 
tasks will pre-empt the running processing tasks on the cores and will lead to deadline 
misses. In such cases CPU utilization will exceed as given in equation (2)  

 i

i

C n C
U

T

δ ∆+ + ⋅=  (2) 

where 

Ci – the execution time of any task i, 

δ – the overhead due to pre-emptions  

CΔ – the high-priority task execution time, 

n – the number of times when high priority task was executed during Ti, 

Ti – the normal task period, 



Advances in Military Technology, 2025, vol. 20, no. 1, pp. 107-122 111
 

 

U – the CPU utilization of the core running the task Ti. 
Hence, a cluster-based partitioning scheme is suggested for the implementation 

of various tasks of the sonar signal processing to ensure that input tasks, output tasks 
and control tasks are handled by one or two clusters as required, depending on the 
input data bandwidth. One cluster is formed for the processing tasks as shown in 
Fig. 3. In the modified EDF scheduler suggested, separate ready queues are maintained 
for each cluster to queue the tasks assigned to each cluster. In this paper, the EDF 
scheduler is modified with two ready queues for two cluster configurations. 

4.1 Scheme for Partitioning the Tasks of a Typical Sonar System 

The context diagram of any typical sonar system is explained in Fig 1. The tasks to be 
executed in any sonar system can be categorized as input tasks, output tasks, control 
tasks and processing tasks. Input task will collect the data from data acquisition sys-
tem for processing and output task will forward the processed data to the display. The 
input and output processes are to be executed before the arrival of the next block of 
data to maintain real time nature. A partitioned scheduling [17, 18] scheme is suggest-
ed to avoid misses of the input data and to ensure proper CPU utilization. Cores are 
partitioned into two or three clusters to handle different categories of tasks. In an N 
core processor with Linux as the operating system, one or two processors are grouped 
into one or two clusters and earmarked for input process, output process and the con-
trol data process, while the remaining cores are grouped into another cluster for 
processing tasks. One core is assigned to run Linux processes and remaining cores are 

isolated as explained in Fig. 3 to run the application program. 

Fig. 3 Partitioned Scheduling a typical Passive Sonar Signal Processing use case 

5 Scheduling Techniques  

Linux is the preferred operating system for multicore processors, but the real time 
requirement and efficient CPU utilization cannot be achieved by the available schedul-
ing policies. The modification of the EDF scheduler with two ready queues for a semi 
partitioned approach to achieve maximum CPU utilization is explained in the subse-
quent sections. 

The Linux scheduler schedules the tasks of the application program onto the free 
cores of the multicore processor. Each scheduler available in Linux has advantages 
and disadvantages. The real time policies available in Linux are SCHED_FIFO, 
SCHED _RR and SCHED_DEADLINE. The policy available for meeting the critical 
timelines of any real time system is SCHED_DEADLINE (Earliest Deadline First 
EDF), but it is not used due to its limitations. For using SCHED_DEADLINE, the 



112 DOI 10.3849/aimt.01943
 

 

application developer has to feed the following parameters: worst case execution time 
(Ci), deadline (Di) and period (Ti) in the application program. Ci depends on various 
parameters, such as processor frequency, processor architecture and the interference of 
co-running tasks with other cores of the multicore processor. In Linux kernel version 
3.14 onwards SCHED_DEADLINE policy is introduced. The priorities of the tasks are 
assigned based on the deadlines of the tasks; the task having the smallest deadline will 
be on the top of the ready queue.  

5.1 Scheduling Techniques in Linux 

The major difficulty in using SCHED_DEADLINE policy is that the application de-
veloper has to estimate the WCET and feed it into the application program. For this 
a normal practice by the application developer is to execute all the task/thread in any 
core of the multicore processor with other cores in idle condition and this value of 
WCET is used in the application program. But the WCET estimate will vary when that 
task is running with other tasks on other cores of the multicore processor. The alloca-
tion of tasks to any core is done based on the execution time and hence this approach 
will affect the CPU utilization; moreover, it may exceed CPU utilization “1” in certain 
situations leading to deadline misses. These deadline misses will be random in nature 
and will be extremely difficult to track while the application program is running on 
any multicore processor. To overcome this problem, a modified EDF scheduler has 
been developed that dynamically estimates the worst-case execution time in real time 
and tasks are assigned to the free core after ensuring that the utilization is below 1.  

6 System Model 

Consider a multicore processor system with M identical cores (P1,…, PM) and an appli-
cation program consisting of a task set with N tasks/threads, i.e., (τ1,…, τN). Let the 
execution time be denoted by (C1,…, CN) and the period be denoted by (T1,…, TN). In 
any real-time system, almost all the tasks except the control tasks will be periodic. All 
the periodic tasks will be repeated in certain intervals, and the pattern of repetition will 
be the same in any major cycle. The period of the major cycle is the LCM of periods 
of all the tasks of the task set. This is verified by simulating a typical task set for mul-
tiple major cycles. 

6.1 CPU Utilization in a Major Cycle 

In a major cycle Mi, each task i will be repeating every mi time  
Major cycle M is the LCM of the periods of the tasks in the task set. The utiliza-

tion of each core in a major cycle is given as 

 
2

1 2
M 1 2

1
i

C C
U m m

T T
= + +⋯  (3) 

where CPU utilization UMi < 1 for efficient core utilization.  

7 Modified EDF Scheduler  

The modified EDF scheduler is an improvement over the existing EDF policy in Linux 
in which the worst-case execution time (WCET) is estimated online as the application 



Advances in Military Technology, 2025, vol. 20, no. 1, pp. 107-122 113
 

 

program is running. When the application program is executed for the first time, the 
initial value of the execution time is fed by the application developer. 

7.1 Computation of WCET in Real-Time 

A scheme to compute the WCET when the application program is running is elaborat-
ed on in this section. In any multicore processor, the execution time of a task will 
depend on the interference of the co-running tasks. In any typical real-time sonar sys-
tem, the application program will consist of a large number of threads/processes with 
different execution times, release times, deadlines and periodicity. In any major cycle 
each task ‘i’ will be executed mi times depending on the period of that task. The worst-
case execution time of any task is the maximum of the execution time of the task in 
any major cycle. The scheme is elaborated on in section 6.3, and the corresponding 
flowchart is given in Fig. 4. 

7.2 CPU Isolation 

In Linux, it is possible to pin a specific core to a certain process to reduce variation in 
its reaction time and protect it from interruptions of the processes that are less im-
portant. By pinning CPUs, the other tasks, non-CPU intensive, kernel threads, and 
interrupt handling cannot occur on the isolated cores, making it suitable for real-time 
applications. This can be done through patched kernel boot parameters such as 
isolcpus, run time control tools such as taskset and cset, and the duty to handle the 
interrupt such as irq balance. CPU isolation benefits system determinism by decreas-
ing context switches and by guaranteeing the timely execution of important loads with 
minimal disturbances. 

7.3 Scheduling of Tasks in the Modified Scheduler  

Scheduling of the tasks [19, 20] to any free core is based on CPU utilization of any 
core in a major cycle. Whenever a task is going to be assigned to any core, the summa-
tion of WCET, i.e., ΣCi of all tasks assigned to that core in the major cycle is 
calculated. The ratio of ΣCi of all tasks and the major cycle Mi is taken and if the ratio 
is less than 1, then only the task will be assigned to that core, i.e., 
UMi = (m1C1/T1 + m2C2/T2 …)/Mi should be less than 1. This ensures that the core 
utilization is maintained below 1. 

7.4 LITMUSRT Implementation Framework 

LITMUSRT [6, 15] is designed to run in a dual-kernel architecture, enabling real-time 
capabilities while preserving standard Linux functionality. This approach differs from 
other approaches - the real-time control of tasks differs from generic Linux operations. 
The real-time kernel performs the dynamic scheduling of tasks with hard timing con-
straints using specific real-time scheduling add-ons. However, non-real-time tasks can 
still be executed in the standard environment based on the Linux kernel. Such segrega-
tion effectively eliminates interactions between real-time and non-real-time processes, 
thus adhering to core ideas of system efficiency and reliability. According to the pre-
sent work, the utilization of a dual-kernel design enables the customization of 
scheduling policies to be more manageable since researchers do not necessarily have 
to heavily tinker with the regular Linux kernel to analyze real-time behavior. This is 



114 DOI 10.3849/aimt.01943
 

 

realized through APIs and hooks for issuing task migration, scheduling decisions and 
timing assessment within the Real-Time Kernel LITMUSRT. 

 

Fig. 4 Flow diagram 

7.5 LITMUSRT Environment 

LITMUSRT is essentially a real-time patch for the Linux kernel built as a research 
prototype for experimenting with real-time scheduling algorithms. It is widely used for 
the analysis of working behavior and performance of real-time systems under different 
scheduling policies. Some of the benefits of LITMUSRT include accurate control over 
the task and flexibility to use the modular scheduler plugins. Its approach involves 
a dual-kernel structure, through which new schedulers can be designed and easily 
incorporated while other normal Linux operations may continue to run in the back-
ground. The concept provides means and substrates, such as RT-launch for running 



Advances in Military Technology, 2025, vol. 20, no. 1, pp. 107-122 115
 

 

real-time tasks, and APIs for their synchronization, timing and latency measurement 
hooks. Scheduler plugins are developed by writing specific scheduling code as per the 
LITMUSRT API, kernel build consisting of a new plugin, and application deployment 
through the RT-launch tool to assess performance and timing promises under real-time 
conditions. 

8 Partitioned EDF (PART-EDF) – A New Scheduler Plugin 

The newly developed PART-EDF scheduler plugin will group the processors into n 
clusters and n-ready queues. The plugin software takes care of the clusters. PART-
EDF is a fixed-priority scheduling algorithm used in real-time systems where each 
task is statically bound to a particular processor (core). Both of them are implemented 
independently, and each processor uses the modified EDF [21-22] algorithm to sched-
ule tasks on its core according to the task’s deadline and CPU utilization. LITMUSRT, 
which is built as an extension of the Linux kernel, offers a set of experimental real-
time scheduling policies, including PART-EDF. 

8.1 Working Principle of Partitioned EDF (PART-EDF) – Scheduler Plugin 

Task Partitioning: 
•  Tasks are partitioned into two or three clusters depending on their criticality. 
•  Tasks with high interrupt frequency are grouped into one cluster, while normal 

processing tasks into a processing cluster. 
•  EDF Scheduler on Each Core: 
•  Each cluster maintains a separate queue for the PART-earliest deadline first 

(EDF) scheduling policy. 
•  Where the due date of two activities is alike, then they are arranged according 

to the time when the activities are arriving. 
•  No Task Migration: 
•  Contrary to global EDF, tasks do not move from one core to another. This 

makes it easier to schedule, but load partitioning must be efficient to ensure that 
the loads are well distributed. 

8.2 PART-EDF Plugin Module Pseudocode 

 



116 DOI 10.3849/aimt.01943
 

 

 

8.3 Explanation of the Pseudocode  

The PART-EDF Scheduling Procedures manage task execution, scheduling, and pre-
emption in a Partitioned Earliest Deadline First (PART-EDF) scheduling system. The 
“part_edf_domain” initializes the EDF domain, assigning it to a specific CPU. The 
requeue function ensures that tasks are placed in the appropriate queue based on their 
state. Pre-emption handling is managed by checking whether the currently scheduled 
task should be pre-empted and if required, pre-emption is triggered. The 
“part_edf_check_resched” procedure calls the pre-emption check to determine if re-
scheduling is necessary. Upon job completion, the task status is reset. The 
“part_edf_schedule” function makes scheduling decisions by locking the scheduler, 
handling the job completion, checking for any pre-emptions, and selecting the next 
task. Task management is handled by “part_edf_task_new”, which initializes job pa-



Advances in Military Technology, 2025, vol. 20, no. 1, pp. 107-122 117
 

 

rameters and enqueues tasks if necessary. The function “part_edf_task_wake_up” 
manages sporadic task releases and requeues unscheduled tasks. The function 
“part_edf_task_block” logs task blocking events, while “part_edf_task_exit” ensures 
proper task removal from the ready queue and triggers pre-emption if needed. These 
procedures together ensure efficient and predictable task execution in PART-EDF 
scheduling.  

8.4 Application Code – Pseudo Code – LITMUSRT 

 

8.5 Explanation of the Pseudocode  

The Part-EDF Scheduling Algorithm initializes a LITMUSRT environment to manage 
real-time tasks efficiently. It takes a list of tasks as input, each defined by a unique 
task ID, period, execution time, and assigned CPU core. The system first initializes the 
LITMUSRT environment, ensuring that real-time scheduling is enabled. For each task, 
a dedicated thread is created, and CPU affinity is set to bind the task to a specific core. 
Real-time parameters, including execution time, period, and CPU assignment, are 
configured before the thread starts execution. Each task then transitions into real-time 
mode, where it repeatedly waits for its next activation based on its defined period. 
Upon activation, the task executes its logic, logs execution details, and then returns to 
a waiting state until the next period. This cyclic execution continues to ensure Earliest 
Deadline First (EDF) scheduling, optimizing task execution and meeting deadlines 
effectively. Finally, when the task is no longer needed, it transitions back to back-
ground mode, ensuring efficient resource utilization and system stability. 

9 Results and Discussions 

In Fig. 5, it shows how to set up the PART-EDF plugin in LITMUSRT. Once enabled, 
we ensure that the PART-EDF plugin is enabled or not with the help of supported 
commands, which have been depicted in the following Fig. 5. 



118 DOI 10.3849/aimt.01943
 

 

 

Fig. 5 Enabling PART-EDF plugin module in LITMUSRT environment 

The PART-EDF scheduling strategy proposed in this paper was evaluated on 
a task set with diversified execution time and period, the major cycle is 600 ms. The 
task set is described with the execution time, deadline, period, and individual utiliza-
tion value and the total execution count in the major cycle is shown in Tab. 1. The task 
allocation strategy used in PART-EDF of our scheduler plugin provided in Tab. 2 is 
employed to distribute high-priority, high-frequency tasks into one cluster and other 
periodic tasks to another cluster to reduce the overhead due to pre-emptions and thus 
enhance CPU utilization. The time for executing the tasks is represented by Fig. 6, 
which is plotted through a bespoke Python toolkit for the visualization of efficient 
resource scheduling and performing tasks exhibited in the PART-EDF plugin. This 
holistic approach brings into focus the ability of a scheduler to tackle real-time tasks 
on the multicore processors. 

Tab. 1 Taskset with its parameters 

Thread ID 
Execution Time (C) 
(Measured WCET) 

Deadline (D) Period (T) Major cycle 
Iterations in 
Major cycle 

T1 10 ms (14.02 ms) 20 ms 20 ms 600 ms 30 

T2 10 ms (10.93 ms) 20 ms 20 ms 600 ms 30 

T3 15 ms (16.34 ms) 40 ms 40 ms 600 ms 15 

T4 5 ms (7.15 ms) 20 ms 20 ms 600 ms 30 

T5 1 µs (1.03 µs) 10 µs 10 µs 600 ms 60 000 

T6 5 ms (6.05 ms) 25 ms 25 ms 600 ms 24 

T7 8 ms (9.21 ms) 30 ms 30 ms 600 ms 20 

T8 8 ms (8.34 ms) 30 ms 30 ms 600 ms 20 

T9 6 ms (6.76 ms) 30 ms 30 ms 600 ms 20 

Tab. 2 Core Utilization and Core assignment PART-EDF 

Core Assigned Tasks 
Total Theoretical 

Utilization 
Measured 

Utilization 

Core 1 T1, T4, T5 0.85 1.165 

Core 2 T2, T6 0.7 0.788 

Core 3 T3, T9 0.575 0.634 

Core 4 T7, T8 0.534 0.585 

 



Advances in Military Technology, 2025, vol. 20, no. 1, pp. 107-122 119
 

 

Tab. 1 shows the increase in the execution time when the tasks are run on a typi-
cal multicore processor having four cores. Tab. 2 gives the theoretical and the 
measured utilization for each core. In Core 1, the utilization goes beyond ONE due to 
the task T5 having high periodicity and high frequency of occurrence. T5 will pre-
empt the other tasks T1 and T4 (increase in execution time is given in Tab. 1), and 
hence, the core utilization goes beyond ONE, and it leads to deadline misses. To avoid 
this, it is recommended to assign high-frequency and high-priority tasks in any real-
time embedded systems like sonar and radar to separate core. 

 

Fig. 6. PART-EDF plugin thread switching behavior  

The work distribution and execution on each core as described in this paper are 
demonstrated in the Python framework used in generating Fig. 6 covering the entire 
600 ms major cycle. This visualization demonstrates how the PART-EDF function 
enables the efficient scheduling of tasks into cores with little or no downtime and 
within set time. 

As can be observed from the results, Thread 5 with its very high priority due to 
the very high repetition rate over the major cycle, severely affects the execution time 
of other threads running in Core 1. Since T5 has high priority and high frequency, it 
tends to pre-empt other tasks and consume more of the CPU time. In real-time, there 
can be situations where the CPU utilization of any core may exceed 1 due to the over-
head caused by pre-emptions. This behavior exposes some of the issues that real-time 
systems developers encounter when handling high-frequency tasks. To this end, in the 
design of our PART-EDF scheduler, we have suggested that partitioning the tasks 



120 DOI 10.3849/aimt.01943
 

 

based on the category into multiple clusters will lead to reduced pre-emptions and 
enhanced schedulability. 

10 Conclusion and Future Scope  

This work provides an adaptive Partitioned Earliest Deadline First (PART_EDF) 
scheduler for real-time defense applications like radar, sonar, etc. In this work, a typi-
cal sonar signal processing system is implemented with the LITMUSRT real-time 
Linux kernel. To support the static partitioning of tasks across cores, a custom sched-
uler plugin, PART_EDF, with a dual-ready queue was designed and incorporated into 
the LITMUSRT architecture. The system was evaluated in a multi-core testbed with 
emulated computationally demanding and periodic tasks relevant to sonar signal pro-
cessing such as filtering, beamforming and target identification. The partitioning 
scheme where different categories of tasks are partitioned into two or three clusters 
results in efficient CPU utilization, leading to miniaturization and low power con-
sumption, an important requirement in defense applications. 

The experimental results prove that PART_EDF improves the core utilization, 
decreases the deadline miss rate, and guarantees definite task scheduling under high 
load conditions. One of the major advantages of the partitioning scheme into clusters 
is reduced inter-core migration overhead, making the scheme ideal for resource-
limited and real-time application environments. This implementation illustrates that 
PART_EDF is a robust algorithm to be implemented for high-risk defense applica-
tions, where predictable performance and meeting the strict constraints on access time 
are crucial. 

It is still worthwhile in future to conduct more experiments with PART_EDF on 
systems with more cores and/or heterogeneous architectures to understand the perfor-
mance of the algorithm in the most extreme scenarios. Further, incorporating energy-
related scheduling mechanisms into portable defense platforms would technically be 
beneficial in the energy consumption disparity, which is crucial in the portability of 
such defense systems. Last but not least, it must be noted that the proposed 
PART_EDF can be incorporated into hybrid systems where original sonar signal pro-
cessing techniques and machine learning target classification are incorporated for 
making smart decisions in real time. To the extent that these advancements would 
increase the resilience, versatility, and generality of PART_EDF, they would also 
expand its usefulness beyond defense systems to real-time scheduling problems in 
general. 

References  

[1] SARANYA, N. and R.C. HANSDAH. Dynamic Partitioning Based Scheduling of 
Real-Time Tasks in Multicore Processors. In: 2015 International Symposium on 

Real-Time Distributed Computing. Auckland: IEEE, 2015, pp. 190-197. DOI 
10.1109/ISORC.2015.23. 

[2] HAN, J.J., W. CAI and D. ZHU. Resource-Aware Partitioned Scheduling for 
Heterogeneous Multicore Real-Time Systems. In: 2018 55th ACM/ESDA/IEEE 

Design Automation Conference (DAC). San Francisco: IEEE, 2018. DOI 
10.1109/DAC.2018.8465907. 

[3] AKRAM, N., Y. ZHANG, S. ALI and D.H.M. AMJAD. Efficient Task Alloca-
tion for Real-Time Partitioned Scheduling on Multi-Core Systems. In: 2019 16th 



Advances in Military Technology, 2025, vol. 20, no. 1, pp. 107-122 121
 

 

International Bhurban Conference on Applied Sciences and Technology (IB-

CAST). Islamabad: IBCAST, 2019, pp. 492-499. DOI 10.1109/IBCAST. 
2019.8667139. 

[4] XU, M., L.T.X. PHAN, H.-Y. CHOI, Y. LI, H. LI and C.A. LU. Holistic Re-
source Allocation for Multicore Real-Time Systems. In: Real-Time and 

Embedded Technology and Applications Symposium (RTAS). Montreal: IEEE, 
2019, pp. 345-356. DOI 10.1109/RTAS.2019.00036. 

[5] MA, K., W. HU, J. LIU and D.Y. GAN. Partition Scheduling Algorithm for 
Shared Resources in Real-Time Systems. In: International Conference on Sys-

tems, Man, and Cybernetics (SMC). Melbourne: IEEE, 2021, pp. 679-684. DOI 
10.1109/SMC52423.2021.9659117. 

[6] CALANDRINO, J., D. BAUMBERGER, T. LI, S. HAHN and J. ANDERSON. 
LITMUSRT: A Testbed for Empirically Comparing Real-Time Multiprocessor 
Schedulers. In: Real-Time Systems Symposium (RTSS). Rio de Janeiro: IEEE, 
2006. DOI 10.1109/RTSS.2006.1. 

[7] BARUAH, S. Partitioned EDF Scheduling: A Closer Look. Real-Time Systems 

Journal, 2013, 49(6), pp. 715-729. DOI 10.1007/s11241-013-9186-0. 

[8] STEVANATO, A., T. CUCINOTTA, L. ABENI and D.B. de OLIVEIRA. An 
Evaluation of Adaptive Partitioning of Real-Time Workloads on Linux. In: 24th 

International Symposium on Real-Time Distributed Computing (ISORC). Daegu: 
IEEE, 2021, pp. 53-61. DOI 10.1109/ISORC52013.2021.00018. 

[9] SHEIKH, S.Z. and M.A. PASHA. A Dynamic Cache-Partition Schedulability 
Analysis for Partitioned Scheduling on Multicore Real-Time Systems. IEEE Let-

ters of the Computer Society, 2020, 3(2), pp. 46-49. DOI 10.1109/ 
LOCS.2020.3013660. 

[10] ZHANG, X., S. HUANG and J. LI. Implementation of Real-Time Scheduling 
Algorithm on Multi-Core Platform. In: International Conference on Computer 

Network, Electronic and Automation. Xi'an: ICCNEA, 2020, pp. 66-71. DOI 
10.1109/ICCNEA50255.2020.00023. 

[11] LI, B., M. XIAOCHUAN, Y. SHEFENG and Y. LI. A Sonar Array Processing 
System Based on Multicore DSPs. In: 2012 IEEE 11th International Conference 

on Signal Processing. Beijing: IEEE, 2012, pp. 421-424. DOI 
10.1109/ICoSP.2012.6491690. 

[12] DIGALWAR, M., P. GAHUKAR and S. MOHAN. Energy Efficient Real Time 
Scheduling on Multi-core Processor with Voltage Islands. In: International Con-

ference on Advances in Computing, Communications and Informatics. Bangalore: 
ICACCI, 2018, pp. 1245-1251. DOI 10.1109/ICACCI.2018.8554680. 

[13] SALAMI, B., H. NOORI and M. NAGHIBZADEH. Fairness-Aware Energy 
Efficient Scheduling on Heterogeneous Multi-Core Processors. IEEE Transac-

tions on Computers, 70(1), pp. 72-82, 2021. DOI 10.1109/TC.2020.2984607. 

[14] FAN, M., Q. HAN, G. QUAN and S. REN. Multi-Core Partitioned Scheduling 
for Fixed-Priority Periodic Real-Time Tasks with Enhanced RBound. In: Interna-

tional Symposium on Quality Electronic Design. Santa Clara: 2014, pp. 284-291. 
DOI 10.1109/ISQED.2014.6783338. 



122 DOI 10.3849/aimt.01943
 

 

[15] CHEN, J.J., J. SHI, G. von der BRÜGGEN and N. UETER. Scheduling of Real-
Time Tasks with Multiple Critical Sections in Multiprocessor Systems. IEEE Trans-

actions on Computers, 2022, 71(1), pp. 146-160. DOI 10.1109/TC.2020.3043742. 

[16] ANDERSON, J.H., J.M. CALANDRINO and U.C. DEVI. Real-Time Scheduling 
on Multicore Platforms. In: Real-Time and Embedded Technology and Applica-

tions Symposium (RTAS'06). San Jose: IEEE, 2006, pp. 179-190. DOI 
10.1109/RTAS.2006.35. 

[17] LIU, C.L. and J.W. LAYLAND. Scheduling Algorithms for Multiprogramming 
in a Hard-Real-Time Environment. Journal of the AC. 1973, 20(1), pp. 46-61. 
DOI 10.1145/321738.321743. 

[18] BAKER, T.P. A Comparison of Global and Partitioned EDF Schedulability Tests 
for Multiprocessors. In: International Conference on Real-Time and Network 

Systems. Paris: Citeseer, 2005. 

[19] KURZAK, J., A. BUTTARI and J. DONGARRA. Solving Systems of Linear 
Equations on the CELL Processor Using Cholesky Factorization. IEEE Transac-

tions on Parallel and Distributed Systems, 2008, 19(9), pp. 1175-1186. DOI 
10.1109/TPDS.2007.70813. 

[20] RAMESH P. and U. RAMACHANDRAIAH. Performance Evaluation of Real 
Time Scheduling Algorithms for Multiprocessor Systems. In: International Con-

ference on Robotics, Automation, Control and Embedded Systems. Chennai: 
RACE, 2015. DOI 10.1109/RACE.2015.7097297. 

[21] BOUAKAZ, A., T. GAUTIER and J.P. TALPIN. Earliest-Deadline First Sched-
uling of Multiple Independent Dataflow Graphs. In: Workshop on Signal 

Processing Systems (SiPS). Belfast: IEEE, 2014. DOI 10.1109/SiPS.2014.6986102. 

[22] DAVIS R. and A. BURNS. A Survey of Hard Real-Time Scheduling for Multi-
processor Systems. ACM Computing Surveys, 2011, 43(4). DOI 10.1145/ 
1978802.1978814. 

 


