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Abstract:  

Autonomous flying devices (AFDs) in the Navy are modern flying devices widely used in 

the military sector as the flying device changes speed and altitude, its kinematic 

characteristics vary significantly, requiring a controller capable of adapting to these 

changes. Therefore, this paper presents a method for synthesizing an adaptive fuzzy 

neural network control algorithm for autonomous naval flying devices to stabilize the 

desired characteristic angles. A Matlab/Simulink environment survey is conducted with 

assumed parameters and the results are compared with those of a PID controller to 

highlight the advantages of the proposed algorithm. 
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1 Introduction 

Autonomous flying devices (AFDs) such as missiles and UAVs are widely used in the 

military and the Navy. The study [1], based on adaptive control theory with 

a nonlinear flying device dynamic model, designs an autopilot system for a class of 

missiles during the launch phase to adapt to changes in aerodynamic parameters and 

wind effects. However, the flying device dynamic model in [1] has been linearized 

into a transfer function form. Study [2] applies model predictive control to design 

a missile control system, but the author of [2] also uses a linear stationary missile 

model to build the control algorithm. Study [3] uses classical control theory (PID 

control) to synthesize the control law, but the published results do not specifically 

address the influence of environmental factors or changes in the kinematic properties 
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of UAVs. Neural networks and fuzzy systems are currently widely applied in control 

and have achieved significant results. Numerous adaptive control methods for 

nonlinear systems are based on either fuzzy systems [4-5] or neural networks [6-7]. In 

[8], a multilayer neural network-based output feedback controller is implemented, 

utilizing state observer gain to estimate the time derivative of the system output. In 

[9-10], a close combination of fuzzy systems and neural networks is used to 

approximate functions with output feedback control laws. Building on these 

foundations, an adaptive fuzzy neural network output feedback controller can be 

developed for uncertain nonlinear systems using only measurable system output. This 

approach ensures that all signals are bounded and that the systemʼs closed-loop output 

converges to the desired trajectory. 

Building on the theory of adaptive fuzzy neural network output feedback 

controllers, the authors have developed an adaptive fuzzy neural network control law 

specifically for a class of naval flying devices to stabilize their desired characteristic 

angles. Section one presents the mathematical model of the flying device; section two 

presents the method for synthesizing the adaptive fuzzy neural network control law. 

Section three presents simulation results with assumed parameters [11]. 

2 Object Model 

Consider a model of a flying device in space as shown in Fig. 1 [11]. 

 

Fig. 1 Description of the rotational motion of the fly device 

In which OXbYbZb corresponding to the axes of the coordinate system attached to 

the object (linked coordinate system); OXaYaZa speed coordinate system; α, β, γ, ψ the 

angles corresponding to the angle of attack, sideslip angle, roll angle, and heading 

angle of the flying device. 

The orbital coordinate system OXmYmZm is a coordinate system attached to the 

autonomous flight device (AFD), with the origin located at the center of mass of the 

AFD (O). The OXm axis aligns with the velocity vector mV
�

of the AFD relative to the 

ground coordinate system, also known as the ground velocity vector. The (OXmYm) 

plane is perpendicular to the horizontal plane corresponding to the position of 
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O relative to the Earth, while the OZm axis is perpendicular to the OXmYm plane, 

forming a right-handed orthogonal coordinate system. As such, the orbital coordinate 

system maintains a relatively stable position concerning the ground in the area where 

the AFD is flying, depending solely on the motion of the AFD’s center of mass. 

According to Newton’s second law, the translational motion equations of the 

center of mass of the flying device and the rotational motion around the flying device 

are determined [11]: 

 
d

d

mV
m F

t
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�
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where F
�

 [N] is the total vector of all external forces acting on the flying device of 

mass m [kg]; md dV t
�

 is the total acceleration vector of the ground speed vector mV
�

 

[m/s] in the ground coordinate system; M
�

 [kg·m2/s2] is the total vector of external 

moments acting on the flying device; K
�

 [kg·m2/s] is the angular momentum. 

The total acceleration of the flying device in the ground coordinate system is 

determined [11]: 

 m m
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where md dV t
�

 is the total derivative of the vector mV
�

 concerning time; md dV t
�

ɶ  is the 

relative derivative of the vector mV
�

 in the rotating reference frame; mω�  (degree/s) is 

the angular velocity vector of the orbital coordinate system. 

Since in the orbital coordinate system Vxm = Vm, Vym = 0, Vzm = 0, Eq. (1) is 

developed into Eqs: 
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Developing Eqs (4), (5), and (6) we have: 
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α β θ= − −  (7) 

 ( )m a a a a a a

d
sin cos cos sin sin cos sin cos

d
y zmV P R R G

t

θ α γ α β γ γ γ θ= + + − −  (8) 

 ( )m a a a a a a

d
cos sin sin cos sin cos sin cos

d
zmV P R Ry

t

Ψ θ α γ α β γ γ γ− = − + +  (9) 

In which θ is the trajectory angle of the flying device, γa is the inclination angle 

of the velocity coordinate system relative to the linked coordinate system, P is the 

thrust along the engine’s axis; Rxa, Rya, Rza are the aerodynamic drag forces. 

Developing Eq. (2) in the linked coordinate system: 
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where Mxb, Myb, Mzb [kg∙m2/s2] is the vector of external moments acting on the flying 

device along the axes of the linked coordinate system; ωx, ωy, ωz, [degree/s] are the 

angular velocities around the center of mass of the flying device in the linked 

coordinate system; Jx, Jy, Jz [kg∙m2] are the moments of inertia along the axes. 

The dynamic equations describing the rotational motion of the flying device in 

the linked coordinate system have the form: 

 ( )d 1
cos sin

d cos
y z

t

ψ ω γ ω γ
ϑ

= −  (13) 

 
d

sin cos
d

y z
t

ϑ ω γ ω γ= +  (14) 

 ( )d
tg cos sin

d
x y z

t

γ ω ϑ ω γ ω γ= − −  (15) 

where the angles ψ, ϑ, γ are the heading, pitch, and roll angles of the flying device. 

2.1 Model of Rotational Motion of the Flying Device in the Vertical Channel 

When the roll angle is stabilized at the value γ = 0, �a ≈ �, Eq. (8) has the form: 

 
d

sin cos
d

yamV P R G
t

θ α θ= + −  (16) 

 ( )c

2

c

d
cos

d 2
y y

V S
mV P C C G

t

δαθ ρα α δ θ= + + −  (17) 

where ( )c
a a cy y y yR C qS C C qS

δαα δ= = +  with 21 2q Vρ=  [kg/m3] as the air density; 

V is the flight speed relative to undisturbed air; S [m] is the characteristic area of the 

missile; Cya is the lift coefficient; δc [degree] is the angle of the lift control surface. 

For a class of missiles being considered, the component c
cyC

δ δ is very small 

compared to yC
αα , so it can be neglected, and Eq. (17) will have the form: 

 

2

d 2 cos
d

y

V S
P C

V g
t m

α ρ
θ α θ

+
= −  (18) 

where g is the gravitational acceleration (g = 9.8 m/s2). 

The left side of Eq. (18) is the normal acceleration of the moving object; the first 

term on the right side is the normal acceleration of the flying device created to control 

the vertical channel. This is the parameter required to accurately track the target. The 

optimal angle of attack must be determined to control the flying device accurately in 

the terminal guidance phase. 
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The relationship between the angles characteristic of the motion of the rocket is 

presented in the following expression [8]: 

 sin sin cos cos cos cos sin cos cos sin sinθ ϑ α β ϑ γ α β ϑ γ β= − −  (19) 

In the self-guided approach mode, AFDs typically fly with a small pitch angle 

� and a small side slip angle β. The heading angle ψ, yaw angle ϑ, trajectory tilt angle 

θ, and trajectory heading angle Ψ also have small values. When these conditions are 

satisfied, the following approximations can be made: sin � ≈ �, sin β ≈ β, sin θ ≈ θ, 

sin ψ ≈ ψ, sin Ψ ≈ θ, cos � ≈ 1, cos β ≈ 1, cos ψ ≈ 1, cos θ ≈ 1, cos Ψ ≈ 1. 

When γ ≈ 0, Eq. (19) takes the following form [12]: 

 θ ϑ α= −  (20) 

Differentiating both sides of Eq. (20) we get: 

 α ϑ θ= −ɺ ɺɺ  (21) 

From Eq. (18), rewriting: 
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Under the condition that the roll angle (Cren) is stabilized around the value γ = 0, 

and considering the pitch angle generated by rotation around the OZ axis: 
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Eq. (12) becomes: 

 1
bz z zJ Mω −=ɺ  (24) 

Developing Eq. (24) we have: 
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Substituting Eqs (20) and (22) into Eq. (21): 
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Differentiating both sides of Eq. (26): 
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Substituting 
z

ϑ ω=ɺ  into Eq. (27) we get: 
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We set: 
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Substituting θ ϑ α= −  into Eq. (28) we get: 
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By combining Eqs (25) and (29), we obtain the system of Eqs: 
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Define the state variable: 
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We see that u cδ= is the control input; the output is 
1

x α= , Eq. (30) is rewritten 

in the form: 

 
( ) ( )0 0

T

0

x A x B F x G x u d

y C x

 = + + +   


=

ɺ
 (31) 

where 10 2
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d is the external disturbance affecting the system. 

3 LQ Controller 

The LQ controller is an optimal solution for linear systems. By combining Eqs (25) 

and (26), we obtain the following system of Eqs: 
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To solve the problem using the LQ method, the system (32) is linearized around 

the equilibrium state. 

We set: [ ] [ ]T T

1 2    zx x x α ω= = ; c cu δ=  

The linear state equation is in the form: 
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where Alq and Blq are determined by the following expressions: 
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Let the error between the output response y and the desired signal yc be a new 

state variable, we have: 
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The extended state-space model with the addition of the state variable ey is: 
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We have 
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The problem is to find the optimal control law lqu
∗

 for the system (36) to 

minimize the quadratic quality index function: 
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where Q and R are the weighting matrices for the state variable and the control 

variable ( 0,  0Q R≥ ≥ ).  

Eq. (37) represents the desire to minimize the error ey (the output of the system 

following the reference signal) and to minimize the control variable.  

The problem is solved by using the Lagrange multiplier λ(t) and establishing the 

Hamiltonian function: 
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where P(t) is the solution of the Riccati differential equation: 
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Let ( )T 1 T
op lqeK R B P t

−= − , the optimal control law (38): 
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4 Direct Adaptive Controller (NFC) 

Consider the state equation of the form [9]: 
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Eq. (43) has the control law [9, 15]: 
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where 
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ry  is the reference signal and e is the deviation. 
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In reality, the mathematical models of controlled objects cannot be exact, so the 

ideal control law (44) cannot be implemented. 

Moreover, the automated aerial vehicle only measures the output y. Therefore, 

a state observer must be constructed to estimate the state of the system. 
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From this, the problem is solved by directly identifying the ideal control law 

( )u t∗ using the fuzzy neural network with input parameters as the estimation errors ê . 

This controller can operate according to the following equation: 
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where uf is the ideal control law identified based on the output of the fuzzy neural 

network; the component unh serves as noise reduction and error compensation for the 

object model. 

The fuzzy neural network is used to approximate the nonlinear functions. In 

developing the controller for the object, the author employs a fuzzy neural network 

with the structure depicted in Fig. 2. 

1k
θ

2k
θ

kh
θ

fk
u

 

Fig. 2 Structure of the fuzzy neural network approximator 

The basic configuration of a neuro-fuzzy approximator consists of several If-

Then rules and a fuzzy inference mechanism. The If-Then Law i (with 1i h= ÷ ) is 

written: 

i
R : If 

1̂
e is 

1

i

k
M and 

2
ê is 

2

i

k
M and …then 

fk
u is i

k
B ; where 

1 2
, ,...,i i i

k k k
M M B  are 

fuzzy sets. 

The Singleton neural fuzzy function approximator has four layers: 

Layer 1 includes inputs, representing the input language vector [ ]T

1 2ˆ ˆ ˆ ˆ, ,...,k ne e e e= ; 

layer 2 represents the member function value of the total number of language 
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variables, each node of layer 2 implements the member function value 
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max-prod inference rule, fuzzification, and defuzzification according to the centroid 

average, the output of the fuzzy-neural approximator can be expressed as follows: 

 

( )

( )
( )11 T

11

ˆ

ˆ

ˆ

i
kj

nh

ki kjMji

fk k knh
i
kj kj

ji

e

u e

e

µ
ϕ

µ

==

==

 Ω ∏  
 = = Ω

 ∏  
 

 (47) 

From that, we can construct the block diagram for the adaptive neuron-fuzzy 

controller as shown in Fig. 3 below. 
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Status observer

Fuzzy- Newral Network
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y1
E

1Eɶ

1
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1Eɶ
Adaptive law

ry
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u

 

Fig. 3 Block diagram of the adaptive neuron-fuzzy controller 

The weights of the network Ωk are updated according to the adaptive updating 

rule [13]: 
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with 0kγ > is a design adaptation parameter. 
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When 
k

k m
Ω

Ω ≤ and 2
k

k m
Ω

Ω ≤ then we have: 
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in which ( ) ( ) ( )1ˆ ˆk k k k ke L s eφ ϕ−=    with ( )kL s is chosen so that ( )1
kL s
− the transfer 

function is stable and even. 

To eliminate chattering in the system, the control component unh is given by 

[13-16]: 
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ɶ ɶ
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 (49) 

here kξ is a positive constant. 

5 Simulation Results 

The parameters are indicated in Tab. 1: 

Tab. 1 Set of hypothetical flight instrument parameters. 

TT Parameter names and symbols Value Unit 

1 Volume of AFD, m   520 kg 

2 Stable flight speed, V0   280 m/s 

3 Programmed flight altitude, H     10 m 

4 Cruise engine thrust corresponding to 

stable flight speed, P 

5 600 N 

5 Characteristic area, S       0.65 m2 

6 Characteristic length, L       3.85 m 

7 Moment of inertia, jz   380 kg·m2 

8 AFD body diameter, D       0.42 m 

9 Mean aerodynamic arc of wing lift, Lc       0.42 m 

10 Distance from AFD center of gravity to 

rudder pressure center, Lcl  

      1.02 m 

5.1 Simulation of the System with a PID Controller 

From the geometric dynamic model (30) and the assumed parameters in the table 

above, construct the Simulink diagram for the angular pitch stabilization control 

system for the AFD with a PID controller as shown in Fig. 4. Use the optimization tool 

in Simulink to determine KP, KI and KD. 



308 DOI 10.3849/aimt.01906

 

Fig. 4 Simulink diagram for angular pitch stabilization  

of the AFD using the PID method 

5.2 Simulation of the Control System with an LQ Controller 

Choose 

1 0 0

0 1 0

0 0 1

Q
 
 =
 
 

, R = 1, with the assumed parameters in Tab. 1. By applying 

the lqr (A, B, Q, R) function in Matlab, we obtain the parameters of the optimal LQ 

controller:  

 [ ]T
18.34 4.31 24.49clqK = − − −   

Fig. 5 constructs the Simulink diagram according to model (36) and control 

law (42). 

 

Fig. 5 Angular pitch stabilization system of the AFD using an LQ controller 

5.3 Simulation of the Direct Adaptive Controller (NFC) 

Based on the dynamic model (30) and the intelligent control algorithm (46), combined 

with the assumed parameters in Tab. 1, the Simulink diagram simulating the angle of 

attack stability control algorithm for AFD is constructed as shown in Fig. 6 
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Fig. 6 Simulink diagram simulating the control algorithm 

Figs 7-9 show the simulation results of the system errors for the PID controller, 

LQ controller, and Direct Adaptive Controller (NFC) with a sinusoidal reference 

signal. Figs 10 and 11 depict the system response and the control response of the 

system with an initial pitch angle Alpha of 5 degrees. Fig. 12 illustrates the system 

response when the speed of the AFD increases to 580 m/s at time t = 20 s. The 

sinusoidal signal is chosen to test the system’s ability to track the input signal under 

oscillating signals, while the Alpha of 5 degrees is selected to assess the stability of 

the system under initial conditions with a specific angle deviation. 

 

Fig. 7 Response error of the system for the PID controller 

 

Fig. 8 Response error of the system signal for the LQ controller 
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Fig. 9 Response error of the system for the Direct Adaptive Controller (NFC) 

 

Fig. 10 System response when the reference signal Alpha is 5 degrees 

Figs 10 and 11 show the system response, error signal, and control response of 

the system at the time t = 20 s when external disturbance impacts the system (wind 

impact). 

The results presented in Figs 7-9 illustrate the effectiveness of the Direct 

Adaptive Controller (NFC) when tracking a sinusoidal reference signal. The NFC 

demonstrated a remarkable ability to minimize the error between the reference signal 

α\alphaα and the actual α\alphaα of the AFD, achieving a high level of accuracy. In 

contrast, the output responses of both the PID and LQ controllers exhibited significant 

errors and failed to follow the reference signal α\alphaα adequately. 

These findings highlight that high-precision tracking of the angular pitch (Alpha 

angle) of the AFD can be achieved using the direct adaptive control algorithm. 
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Integrating a Neuro-Fuzzy network allows for the estimation of the ideal controller, 

leveraging online learning capabilities. As observed in Fig. 10, the NFC controller 

outperforms the PID controller in terms of overshoot, with values of 3 % and 15 %, 

respectively. Furthermore, the settling time for the NFC controller was shorter than 

that of both the PID and LQ controllers, indicating superior performance in achieving 

stability. 

 

Fig. 11 Control response of the system when the reference signal Alpha is 5 degrees 

 
Fig. 12 System response when the speed of the AFD increases to 580 m/s 

 at time t = 20 s 

In the final motion phases, an experiment was conducted to assess the AFD’s 

response while varying its speed from 280 m/s to 580 m/s. Fig. 12 illustrates that the 

output responses from the PID and LQ controllers did not adequately track the desired 
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input. Conversely, the NFC controller maintained accurate tracking of the desired 

input, showcasing its effective online adaptation capabilities during variations in flight 

speed. 

These results demonstrate the advantages of employing a direct adaptive control 

strategy, particularly in dynamic environments where the system parameters may 

change rapidly. Future work will focus on further refining the control algorithms and 

exploring their applicability in real-time systems. 

6 Conclusion  

In scenarios where the input signal is sinusoidal or when the Alpha angle is fixed at 

5 degrees, the Direct Adaptive Controller (NFC) demonstrates enhanced control 

performance compared to both the PID and LQ controllers. The simulation results 

further substantiate that the NFC controller maintains accurate tracking of the input 

signal during variations in flight speed. This study successfully implements the direct 

adaptive control algorithm to precisely regulate the pitch angle of the AFD by the 

desired specifications. The outcomes of the simulations conducted in the 

Matlab/Simulink environment validate the applicability of the NFC controller for 

effective tracking of the required pitch angle within a nonlinear model characterized 

by changing flight speeds. 

Despite the favorable simulation results achieved with the direct adaptive control 

algorithm, further evaluations must be conducted in real-time operational settings. 

Successful real-time implementation could pave the way for a myriad of applications 

in AFDs experiencing variable speeds. Additionally, this opens new avenues for 

research in intelligent control theory aimed at enhancing the precision of control 

methodologies for a class of aerial vehicles subject to speed fluctuations. 
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