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Abstract:  

Accurate prediction of the trajectory of a projectile passing through air almost always 

requires the aid of computer-assisted numerical procedures. Herein are derived closed-

form expressions for a certain class of such trajectories, which can provide insights not 

readily obtainable with computer codes alone. For example, the expressions reveal er-

rors in widely-promulgated formulas for predicting the effects of Coriolis acceleration 

and of uphill or downhill launches. An example is presented showing negligible differ-

ences between results from expressions derived herein and those from a well-developed 

and widely-used code that uses numerical integration. Such agreement can be expected 

for flat trajectories of projectiles with shapes resembling that of a standard, so-called 

G-7 projectile, in the supersonic speed range. 
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1 Introduction 

A projectile’s trajectory is the path it creates after its launch. It is determined by the 
properties of its launch and the physical laws that govern changes in its motion during 
flight. The basis for predicting quantities of interest (e.g. velocity, deviation from line 
of sight, etc.) consists of accurate mathematical representation of the physical laws as 
they act along the path. To reach useful predictions from these equations of motion 
requires determination of the accumulative effects from local changes along the path. 

When certain conditions lead to sufficiently simple equations of motion, these 
can lead to closed-form expressions for quantities of interest. An element that almost 
always prevents such simplification is aerodynamic drag. The mathematical expres-
sion of its effect depends upon a factor called the projectile’s drag coefficient, values 
of which are determined by experiments and can vary in complicated ways. 
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Absent our ability to derive closed-form expressions, modern computer-aided 
numerical methods can supply quantitively accurate values for items of interest. Codes 
such as that of [1] have been developed with extensive experimental verification, so 
provide meaningful comparisons for predictions from the model developed herein. 

The class of trajectories analysed herein is among those effected by aerodynamic 
drag but is restricted to flat trajectories of projectiles with certain shapes and range of 
speeds. 

2 Reference Frames, Forces, and Accelerations 

The earth is assumed to form a reference frame E rotating in a Newtonian reference 
frame N about the north-south polar axis at one revolution per sidereal day. As shown 
in [2], the accelerations of a moving point P in N and in E are related by 

 2N P N PE E P N E E P= + + ×a a a ω ν  

The first term on the right expresses the N-observed acceleration of a point fixed 
in E and located coincident with P. 

In flight, the forces acting on the projectile are aerodynamic drag fd and the gravi-
ty force fg. In terms of these, Newton’s second law, fd + fg = m NaP, can be combined 
with the above kinematic relationship to yield 

 
gd 2E P N PE N E E P

m m

 
= + − − × 

 

ff
a a ω ν  (1) 

The free-fall acceleration (fg/m – NaPE) establishes the local vertical direction; its 
magnitude g varies negligibly with geographic location, around 9.80665 m/s2. The last 
term gives rise to what is known as the Coriolis displacement. 

As in most “point-mass” models, the force fd is assumed to act opposite the dif-
ference v – w between the velocities of the projectile and of the wind. Fig. 1 shows 
vectors of v, w, and fd. et designates a unit vector tangent to the path of the projectile. 
It will be further assumed that |w| is much smaller than v. 

 

Fig. 1 Vectors representing projectile and wind velocities and drag force 

The figure indicates that the drag force can be expressed as 

 d d d tν ν
−  = − = − + 

 

ν w w
f f f e  

The relatively small component of the drag force perpendicular to the flight path,  

 ( )d t tν ν− ⋅  f w e w e  (2) 
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contributes importantly to the centripetal component of acceleration. Its contribution 
to the Coriolis displacements is missing from the formulas in [3]. 

3 Definitions for Location and Directions 

The following relationships will be used to specify positions and directions:  

 = the angle above the equator locating the latitude of the shooting site. Then, the 
angular velocity of the earth in a Newtonian reference frame is given by 

 ( )N vcos sinN E λ λ= Ω +ω e e  

in which Ω = 7.292 × 10−5 rad/s [4], and eN and eV are unit vectors in the local north-
ward and vertical directions. α = the azimuth of the direction of firing, measured 
clockwise from the local North. Then, horizontal unit vectors in the azimuth and azi-
muth + 90o directions are given by 

 A N E

z N E

cos sin
sin cos

α α
α α

= +
= − +

e e e

e e e
 

in which eE is a unit vector directed to the local eastward direction. 
β = the “look angle”, or elevation of the line of sight above the horizontal. Then, unit 
vectors in the directions of the line of sight and 90o above it are given by 

 x A v

y z x

cos sinβ β= +
= ×

e e e

e e e
 

4 Equations of Motion 

Rectangular Cartesian coordinates x, y, z, corresponding to the unit vectors ex, ey, and 
ez as defined above, will be used to locate the projectile. Distance along the flight path 
will be denoted by s. The x-axis will be taken as the line of sight from the firearm with 
its origin directly above the muzzle. The following will be restricted to flat trajecto-
ries, in which dx/ds differs negligibly from unity and both |dy/ds| and |dz/ds| are much 
smaller than unity. This leads to 

 t x y z

d d

d d

y z

x x
= + +e e e e  (3) 

Useful relationships are obtained by projecting each member of Eq. (1) onto three 
selected directions.  First, dot-multiplication with et leads to 

 d td d
1 sin cos

d d

v y
g

t m x
β β

ν
⋅   = − − + +  

  

f e w
 

Small values of et ∙ w/v and dy/dx justify reducing this to 

 dd
sin

d

v
g

t m
β= − −

f
 

Further, it is known that the drag force is much greater than that of gravity, sug-
gesting further neglecting the term g sin β. This will have no effect except on 
predictions for uphill or downhill firing, where its neglect will slightly overestimate 
the speed with uphill firing and slightly underestimate the speed with downhill firing. 
In the following, the approximation 
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 d d

dm x

νν= −
f

 (4) 

will be used. 
Relationships for predicting displacements in the y- and z (horizontal)-directions 

are obtained by dot-multiplying Eq. (1) throughout by ey and ez. For the y-direction, 
this leads to 

 y2 2

2cos yCg v
w

vv v

βθ
Ω′′ = − − +  (5) 

wherein primes denote d/dx, θ = yʼ, wy = ey ∙ w, and Cy = cos λ sin α. Similarly, dot-
multiplication with ez into Eq. (1) leads to 

 z
z2

2Cv
w

vv

′ Ω′Ψ = − +   (6) 

wherein Ψ=z’, wz = ez∙ w, and Cz= sinλ cosβ−cosλcosα sinβ.  

5 Rate of Diminishing Speed 

If there are no forces in the direction of et other than aerodynamic drag (see above 
comment regarding uphill and downhill firing.), Newton’s second law and the defini-
tion of the drag coefficient led to the rate of change of speed given by 

 

2

D 2

d π

d 8

v v
v C

x m d

ρ= −  (7) 

in which CD is the projectile’s drag coefficient, ρ is the air density, and m and d are the 
mass and diameter, respectively, of the projectile. Modern computer codes use tabulat-
ed values of CD for numerical predictions of bullet speed and related elements of 
trajectories. An alternative to tabulated values has been suggested by R. L. McCoy [5] 
and others, as  

 D

K
C

M
=  (8) 

wherein M is the Mach number and K is a constant selected to best-fit the tabulated 
values for the projectile in the speed range of interest. Many (possibly most) modern, 
spitzer-type projectiles exhibit a variation of drag coefficient with Mach number that is 
well-approximated by that of a selected standard shape called the G-7 projectile, 
which forms a basis of many computer codes for external ballistics predictions. The 
drag coefficient of the projectile under examination here is assumed to follow Eq. (8), 
which, within the supersonic range, closely follows that of the G-7 projectile, CD7.   

Along with the chain rule, dv/dt = v dv/ds, Eq. (7) and Eq. (8) can be combined 
and integrated to yield a useful expression for speed in terms of distance s: 

 ( )2
0 1v v Cs= −  

The significance of the constant C can be revealed upon examination of Fig. 2, 
where the distance b can be recognised to equal   
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Fig. 2 Variation of speed with distance 

This leads us to define a dimensionless measure of range as 

 
2

s
r

b
=  (9) 

in terms of which the speed varies as 

 ( )2
0 1v v r= −  (10) 

From Eq. (10) we find that a projectile, initially moving at Mach M0 > 1, slows to 

Mach 1 at 01 1r M= − , after which the approximation Eq. (8) cannot be relied upon. 
As Section 8 below reveals, the effects of the drag force on elements of the tra-

jectory are determined by the characteristic distance b. Toward an evaluation of b, 
observe that from Eq. (7) 

 
2

D

8

π

m dv
v Cρ

− =′  (11) 

Because the drag coefficient is usually unknown, we turn to a related ballistic co-

efficient relative to the G-7 projectile. This is defined as the ratio of the deceleration of 
a one-pound, one-inch diameter G-7 projectile to that of the projectile under consid-
eration, both at the same speed and atmosphere: 

 
( )

( )
D7

B7 2
D

1 lb

1 in

C m
C

C d
=  (12) 

Elimination of m/d2CD from Eq. (11) and Eq. (12) leads to  

 
( )

( )
B7

2
D7

8 0.45359237 kg

π 0.0254 m

Cv
v

Cρ
− =′  

If the constant K is selected so that Eq. (8) agrees exactly with CD7-data at Mach 

2.2, where CD7 = 0.286, the corresponding approximation D7 0.286 2.2C a v≈  can be 

expected to be acceptably accurate throughout the supersonic range. This, along with 
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the values of density and sonic speed of the standard ICAO atmosphere at sea-level, 
ρs = 1.2250 kg/m3, as = 340.294 m/s, lead to 

 ( )
3

4
1 2

B7 02 373.532 m s s

s

p T
b C v

p T

 
=  

 
 (13) 

wherein the pressure and absolute temperature of the standard ICAO atmosphere are 
760 mm Hg and 288.15 K, respectively. CB7 is the G-7 ballistic coefficient of the pro-
jectile and v0 is its initial speed.  

Other means of estimating b can be obtained from measured or independently-
predicted flight data, from the following: the time of flight can be determined from Eq. 
(4) by integrating dt = ds/v: 

 
20

00

d

11
22

s s
t

s
vv

bb

σ
σ

= =
   −−      

∫  (14)  

from which an estimate of b follows in terms of distance and flight time or speed 

 

0 0

2

1 1

s s
b

s v

v t v

= =
− −

 

Tab. 1 provides comparisons of the predictions of Eq. (10) and Eq. (14) with 
those from a widely-used code [1]. The example there is for a bullet of G-7 ballistic 
coefficient CB7 = 0.288, launched at 1 021 m/s into an ICAO atmosphere at sea level, 
for which Eq. (13) predicts a distance 2b = 3 437.4 m. 

Tab. 1 Predicted Speeds and Flight Times for CB7 = 0.288 

  Speed, [m/s]   Flight Time, [s] 

Range, [m] Ref. [1] Eq. (10)  Ref. [1] Eq. (14) 

      0 

  400 

  800 

1 200 

1 600 

1 021 1 021   0.000  0.0000 

  797   797   0.4431 0.4434 

  602   601   1.0206 1.0212 

  435   433   1.8019 1.8057 

  315   292   2.9079 2.9317 

6 Projectile Path 

The near-agreements exhibited in Tab. 1 suggest substituting Eq. (10) into Eq. (5) and 
Eq. (6), so that closed-form expressions for the effects of gravity, cross-wind and Cor-
iolis displacement can be obtained. With s replaced with x in Eq. (9), these 
substitutions lead to 
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y y

2 4 3 2
0 0 0

2 4d 2 cos

d

w bCbg

q v q v q v q

θ β Ω
= − −  (15) 

 z z
3 2

0 0

2 4d

d

w bC

q v q v q

ψ Ω= − −  (16) 

wherein the variable q = 1 – x/2b specifies the position along the flight path. 
Integration of Eq. (15), with the assumption that w is constant along the flight 

path, yields an expression for the slope of the trajectory: 

y y
0 2 3 2

0 00

2cos 1 1 1
2 1 1 1

23

w Cg
b

bv v qv q q

βθ θ
 Ω     − − −= − − + + + + +      
      

 

Here, θo is the value, at x = 0, of y’, the small angle between the line of sight and 
the line of departure. This is determined by the elevation component of the sighting 
system. Another integration leads to 

 
( )

22
y y

0 2 2 2
0 00

1
2 ln

1 2 3 cos 1

121

r
w x C xr g x r r

y h x
r v vv rr

βθ

 −   Ω− −  = − + − + ⋅ + ⋅
− − 

 (17) 

in which r = x/2b and h is the height of the line of sight above the muzzle. The first 
two terms specify the line of departure (the path the projectile would follow in the 
absence of lateral acceleration). With the help of Eq. (14), the expression for contribu-
tion from cross wind can be rewritten as (t –x/v0)w, the well-known “delay-time” 
formula. The next term represents what will be herein called gravity drop, i.e., the 
drop below the line of departure. “Drop” is sometimes used to refer to that below the 
line of sight, unsurprisingly creating confusion. 

The expression for horizontal displacement z can be obtained from Eq. (17) by 
replacing (h, θo, g, wy, Cy) with (0, ψ0, 0, wz, Cz), in which ψ0 is determined by the 
windage component of the sight setting. 

7 The Coriolis Force Contribution 

The y- and z-components of the Coriolis displacement are distinguished by the factors 
Cy and Cz, which depend on the geographic location and direction of firing. A com-
mon multiplier (which, incidentally, is the lateral Coriolis displacement that would 
result if the same launch were initiated at the North pole) gives the corresponding 
displacement components. The formula in [3] for the horizontal component gives this 
multiplier as xΩ t, which, with the help of Eq. (14), can also be expressed as 

 
2

0

1

1

x
C

r v

Ω= ⋅
−

ɶ  (18) 

For comparison, the last term in Eq. (17) shows the multiplier to be 
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2
0

1
2 ln

1
r

xr
C

vr

 −  Ω− = ⋅  (19) 



250 DOI 10.3849/aimt.01782

Now, the expression xΩ t is exactly one that would be valid if the projectile were 
to follow a path that is straight in the inertial frame. But the Coriolis effect causes the 
earth-observed path to take on a curvature, which will induce a lateral component of 
the drag force in still air. Hence, we can expect the expression xΩ t to lead to an over-
estimate of the displacement. 

Tab. 2 presents predictions of gravity drop and the Coriolis multiplier, for the 
same trajectory as that of Tab. 1. Comparison between results from [1] and from Eq. 
(17) for gravity drop suggest that Eq. (8) leads to accurate results. Comparisons of the 
Coriolis multiplier predicted by Eq. (17) with that from [3] illustrate the possible ex-
tent of the overestimate from [3].  

Tab. 2 Gravity Drop and Coriolis Multiplier for Trajectory of Tab. 1 

Range, [m] Gravity Drop, [m] Coriolis Multiplier, [m] 

 Ref. [1] Eq. (17) Eq. (18) Eq. (19) 

400 0.887 0.889 0.0129 0.0124 

800 4.315 4.320 0.0596 0.0543 

1200 12.235 12.266 0.1580 0.1355 

1600 28.880 29.066 0.3420 0.2716 
 

As pointed out above, the formula in [3] for the horizontal component neglects 
the influence from the lateral component of the drag force.  The formula for the verti-
cal component neglects variation in both the magnitude and direction of the velocity; 
hence it predicts the result as if aerodynamic drag were absent. Comparisons with the 
prediction from Eq. (17) indicate that the formula for the vertical component can over-
estimate the effect by more than 58 %. 

8 Effects from Surrounding Air 

Surrounding air affects several elements of the trajectory, including speed, time of 
flight, gravity drop, and Coriolis displacement.  The effect on each of these is deter-
mined by a drag factor, that depends only on the single parameter r = x/2b, which is 
composed of range, ballistic coefficient, initial speed and atmospheric pressure and 
temperature. The factors determine how each is related to that of a “vacuum” trajecto-
ry, i.e., one with gravity the only force. These functions are readily identified as 
factors in Eq. (10), Eq. (14) and Eq. (17), with some values shown in Tab. 3. 

9 Summary and Conclusions 

Tab. 1 and Tab. 2 indicate that errors resulting from replacing the G-7 drag law with 
Eq. (8) will be negligible with appropriate K within the speed range 1.0 < M < 3.0. 
Tabulated values of CD7/0.286(2.2 a/v)1/2 confirm this. 
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Tab. 3 Drag Factors 

 

Elements of trajectories presented here are easily predicted today using one of 
a number of well-developed computer codes that use numerical procedures to integrate 
the equations of motion. An excellent one is listed as [1]. More detailed predictions 
than provided by “point-mass” codes like that of [1] require models of more than three 
degrees of freedom, instead of the assumptions described in the paragraphs following 
Eq. (1). 

While available codes easily provide quantitatively accurate predictions, there are 
advantages to closed-form expressions when it comes to displaying trends associated 
with varying parameters. For example, these expressions show clearly how, in terms of 
the single parameter r = x/2b, aerodynamic drag modifies each element of a vacuum 
trajectory. Or, the increase in elevation resulting from firing uphill or downhill with 
a sight setting fixed for horizontal firing, is readily predicted from Eq. (17), as 
∆y = (1 – cos β)(gravity drop)β = 0. (The irrationally-based but widely-promulgated 
“equivalent-horizontal-distance” method can significantly under- or over-predict the 
necessary correction). 

Finally, Eq. (17) provides an accurate (within the supersonic range) predictor of 
Coriolis displacements, including heretofore-neglected effects of the drag force. 
Whether this will be of importance to the long-range shooter will depend on the uncer-
tainty within the knowledge of crosswind, which may be too great to justify 
accounting for Coriolis displacement. 
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