
Advances in Military Technology
Vol. 17, No. 2, 2022, pp. 211-229

ISSN 1802-2308, eISSN 2533-4123
DOI 10.3849/aimt.01722

 
 
 
 
 
 

Method for Minefields Mapping by Imagery 
from Unmanned Aerial Vehicle 

M. O. Popov1*, S. A. Stankevich1, S. P. Mosov2, O. V. Titarenko1, 
S. S. Dugin1, S. I. Golubov1 and A. A. Andreiev1 

1 Scientific Centre for Aerospace Research of the National Academy 

of Sciences of Ukraine, Kyiv, Ukraine 
2 Institute of Public Administration and Research in Civil Protection,  

SES of Ukraine, Kyiv, Ukraine 

The manuscript was received on 16 March 2022 and was accepted  
after revision for publication as research paper on 7 September 2022. 

Abstract:  

The paper proposes a method for minefields mapping by the centimeter resolution 

imagery from a copter-type unmanned aerial vehicle (UAV) which is equipped with 

multispectral camera and thermal infrared camera. The research methodology is the 

probability fusion by each sensor and the subsequent decision making on the landmine 

presence/absence. Models for the landmine detection in multispectral and thermal 

images are considered. The training sample structuration is proposed for the landmine 

detection reliability enhancement. The local temperature anomalies of landmine size 

are allocated by sliding window scanning the thermal image. The experimental per-

formance of actual landmines detection at a special test site in Ukraine is described. 

The probability of correct landmine detection was 0.92 while with a false alarm prob-

ability it was 0.45. 
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1 Introduction 

As a rule, any war or military conflict is inextricably linked with the mining of territo-
ries. According to the Geneva International Centre for Humanitarian Demining, as of 
January 2021, more than 60 countries have faced numerous cases of destructions by 
undetected anti-personnel landmines [1]. Ukraine is among these countries.   

The landmine clearance challenge is in the focus of attention of high-profile in-
ternational and national organizations; experts from many countries of the world are 
working on its solution. A large number of different methods and systems for 
landmine clearance have been developed – see, for example, [2, 3], which can signifi-
cantly increase the demining efficiency, but the problem of deminer’s personal safety 
remains pressing. This problem can be solved essentially by ground-based robotic 
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systems, but their performance is not yet high enough, and their use is possible only in 
limited landscape conditions. 

Therefore, a remote approach to the landmines, unexploded and abandoned ord-
nances detection by analyzing aerial imagery of terrain was proposed in the early 
2000s [4]. A number of remote mine detection systems were developed, in particular, 
ASTAMIDS and AMDAS systems [5], with imaging sensors installed on piloted heli-
copters. However, as a rule, the copter-type unmanned aerial vehicles (UAVs) are used 
as a mobile platform for onboard sensors in the last decade of engineering develop-
ments [6-9]. 

Multispectral, hyperspectral, thermal infrared cameras, radar systems, etc., are 
used from UAVs to acquire images of the inspected area [10-12]. 

The specific composition of the onboard payload is aimed to ensure the maxi-
mum probability of landmine detection, while satisfying certain restrictions on cost, 
technical complexity, duration of continuous operation, jamming resistance and others. 

Further, the paper is organized as follows. Section 2 defines the research objec-
tive. The study methodology is described in Section 3. The constructive result of the 
work – the method for minefields mapping – is presented in section 4. The experi-
mental results of the developed method testing are given in section 5. Section 6 
discusses the results obtained, and section 7 briefly summarizes the research outputs.  

2 Research Objective 

The research objective is to propose and substantiate an efficient method for mine-
fields mapping by terrain imaging from a mobile light airborne platform. 

A common copter-type UAV was chosen as such a platform. Taking into account 
M  the cost and technical complexity limitations, it was determined that the UAV’s 
onboard sensors set for the terrain imaging consists of a multispectral (MS) camera, 
a thermal infrared (TIR) camera and a conventional color digital (CD) camera. 

3 Methodology 

The study is based on the following methodological considerations [13]: 
• data on the physical properties of the land surface contain indicative infor-

mation about the landmine presence/absence within the corresponding area, 
• the data on the physical properties of land surface is obtained by imaging sen-

sors installed on a mobile airborne platform, 
• the decision on the landmine presence/absence is made on the basis of a com-

prehensive analysis of the data obtained by various onboard sensors. 
Let us consider that our interest is a land surface element of a small area that may 

pose a threat. Then, we will assume that if there is a mine in this element (M = “land 
mine”), then case A takes place (A = “presence of a threat”), and vice versa, case 
A does not occur (i.e. Ā), if there is no mine (i.e. M ). Then the alarm occurrence 
probability due to the buried landmine is calculated as 

 ( ) ( ) ( ) ( ) ( )| |p A p A M p M p A M p M= +  (1) 

where p(M) is a landmine occurrence probability, p(A|M) is a conditional probability 
of the threat, and ( )|p A M  is a probability of false alarm. 

Eq. (1) shows that the threat probability is determined primarily by information 
about the landmine presence/absence. It is assumed that such information can be ob-
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tained by the onboard sensor. However, it should be noted that for a number of reasons 
(both natural and technical), it is generally not possible to ensure a high probability of 
landmine detection with any single sensor. In this regard, it becomes clear that there is 
a need to involve several different sensors simultaneously for landmine detection [6]. 

Combining the data received by several sensors operating in parallel increases the 
landmine detection likelihood, but, unfortunately, at the same time, it increases the 
number of false alarms [14]. An increase in the number of false alarms puts an addi-
tional strain on deminer and can significantly extend the time required to perform the 
landmine clearance task. One efficient way to reduce the number of false alarms is to 
engage modern algorithms for signal classification [15]. 

Suppose that N sensors are used for a minefield mapping. All of them generate a 
terrain scene image of the same ground sample distance (GSD) but in different spectral 
bands. If all these images have the same raster structure and are pixel-wise co-
registered with each other, then this makes it possible to obtain a description of the 
GSD-size land surface element as an N-dimensional pixel signal 

 ( ) ( ) ( ){ }1 , , , ,n N
S s s s= ⋯ ⋯  (2) 

where s(n) is the level of signal generated by the n-th sensor. 
According to the adopted methodological considerations, the landmine presence 

can affect the land surface properties. This element (pixel) of the digital image may 
contain certain information about the landmine presence. Thus, according to the 
known pixel signal, it is possible to provide some estimate for the conditional proba-
bility of the landmine presence inside the land surface element, which is represented 
by the current pixel. 

And then, the aim is to make an appropriate decision on the landmine presence or 
absence within the corresponding terrain element using this estimate in accordance 
with the defined rule. 

4 Method 

Based on the above methodological considerations, a new remote method for mine-
field map acquisition has been developed. The method consists of the following 
procedures (Fig. 1): 

• aerial imaging mission planning, 
• aerial imaging performing, 
• pre-processing of aerial imagery, 
• production of digital image mosaics, 
• smoothing of digital image mosaics, 
• pixel-wise classification of digital image mosaics, 
• decision making, 
• documenting. 
Below, each procedure is described consistently and in detail. 
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Fig. 1 Flowchart of the method for minefields mapping 

4.1 Aerial Imaging Mission Planning 

It is performed based on current instructional and methodological documents, taking 
into account information on the territory and specifications of the equipment used and 
considering the customer’s operation requests. For example, the customer’s requests 
may include the maximum allowable time for the task, the accuracy of the output data 
product, the required level of information protection, etc. 

The information on the territory should include: 
• coordinate allocation of the area of interest, 
• data on the terrain configuration (soil type, vegetation cover, possible artificial 

objects, etc.), 
• information about the expected landmines category (anti-personnel, anti-tank). 
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The following must be known about the equipment used:  
• flight and technical specifications of UAV, 
• technical specifications of onboard sensors, 
• onboard storage capacity, 
• radio link parameters, etc. 

The task of aerial imaging mission planning is to establish the route, to calculate 
UAV flight altitude and the frame acquisition frequency over the territory. 

The route is established based on the requirements of full coverage of the entire 
area of the minefield and the provision of a given transverse overlap (usually 
40-60 %). 

The altitude of the UAV is calculated based on the necessary number of pixels 
within a single landmine image – at least 50-70 pixels per landmine segment. 

The frequency of the frame-by-frame imaging of the territory should provide 
a required value of the longitudinal overlap (usually 30-40 %) of the image frames 
formed by the onboard sensor. 

4.2 Aerial Imaging Performing 

A typical UAV flight route while imaging an area of interest is shown in Fig. 2. The 
flight and control parameters of the imaging process are programmable, with particular 
attention to the endurance of the pre-estimated flight altitude and camera operating 
synchronization. 

 

Fig. 2 A typical UAV flight route while imaging an area of interest [16, adapted] 
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Each element of the surveyed area is simultaneously taken on three digital imag-
es: multispectral, thermal infrared, and conventional in natural colors. 

A multispectral image consists of several separate band images (the number of 
bands denoted as the L), each of which is formed in a specific optical spectrum. 
A thermal infrared image registers the land surface temperature values in each pixel. 
The color image contains terrain information in the unified RGB (red, green, blue) 
view. 

Depending on the requirements and available technical capabilities, the full 
amount of data registered by onboard sensors can be recorded to the onboard storage 
or transmitted to the ground receiving and processing station. 

4.3 Aerial Imagery Pre-Processing 

All acquired images of the territory require pre-processing. Pre-processing operations 
are radiometric and spatial correction, raster structure regularization, different images 
co-registering, and geo-referencing. In some cases, noise and distortions filtering is 
performed over the “raw” images. 

4.4 Production of Digital Image Mosaics 

Each sensor’s full package of digital images is assembled into a joint image mosaic. 
One of the well-known photogrammetric applications can be used for this, for exam-
ple, proprietary Pix4D Mapper, Agisoft Metashape, Digitals Professional, or free open 
source ones, such as OpenDroneMap [17]. As a rule, the service deliveries of most 
branded drones include software packages for aerial imaging mission planning, which 
often include photogrammetric modules for the image mosaic compilation. 

Thus, the following data are obtained: 
• multispectral image mosaic MM (consists of L layers, corresponding with the 

number of band images), 
• thermal infrared image mosaic MT. This one is single-layered, 
• color image mosaic MC with RGB images. 
All image mosaics have the same number of pixels (we will denote this number 

as K), and the corresponding pixels of image mosaics are numbered the same. 
Let us consider how MM and MT image mosaics are processed and analyzed to 

detect landmines and form a minefield map. 

4.5 Smoothing Digital Image Mosaics 

The size of the terrain element GSD is gnomonically projected to one pixel of any 
band image. If the GSD size is about 1-3 cm, then this is much smaller than the 
landmine segment's diameter. To reduce the random variability of pixel signals per 
landmine, the smoothing of the image mosaics is required. This operation is performed 
in a cycle with an isotropic sliding round window. The radius of the sliding window in 
pixels is calculated as 

 
π

G
r =  (3) 

where G is the number of pixels in the landmine image segment. 
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After smoothing operations accomplishment, the two datasets are formed. The 
first one consists of pixel signals of the MM image mosaic; the signal of any k-th pixel 
of this image mosaic has the vector form: 

 ( ) ( ) ( ) ( ){ }1 , , , , , 1, 2, ,MM MM MM MM
l Lk s k s k s k k K= =S ɶ ɶ ɶ⋯ ⋯ ⋯  (4) 

where ( )MM
ls kɶ  is the level of the smoothed signal in the k-th pixel of the l-th layer of 

the image mosaic. 
The second dataset is a sequence of pixel signals of the MT image mosaic: 

 ( ){ }, 1, 2, ,MT MTS s k k K= =ɶ ⋯  (5) 

where ( )MTs kɶ  is the level of the smoothed signal of the k-th pixel of this image mosaic. 
The next operation is the pixel-wise classification of MM and MT image mosaics 

to detect landmines. 

4.6 Pixel-Wise Classification of Digital Image Mosaics 

The pixels of the MM and MT mosaics are classified semi-automatically with the par-
ticipation of an operator. The operator's contribution includes adjusting the parameters 
of the classification algorithm, interactive formation of a training sample by visual 
interpretation of terrain elements using MC image mosaics, controlling the algorithm 
operation and evaluating the classification results. 

Pixel-wise classification of MM image mosaic. It is carried out by the method of 
binary logistic regression [18]. It is assumed that any pixel of an image mosaic, de-
pending on its unique signal, can belong to either of two classes. Belonging to the first 
class means that this pixel reflects a terrain element with a landmine. If the terrain 
element displayed by this pixel does not contain a landmine, it belongs to the second 
class. Therefore, the first class pixels will be encoded by y = 1 label, and second class 
pixels – by y = 0 label. 

The image mosaic MM signal (4) determines the class label for each pixel in da-
taset. 

According to the method of binary logistic [19], the probability that the k-th pixel 
with the SMM(k) signal belongs to the class y = 1, is calculated by the expression: 

 ( )
( )

( )

T
0

T
0

exp
| 1

1 exp

MM

MM
k k MM

k
p k y

k

ω
ψ

ω

 +  = = =   + + 

ω S
S

ω S
 (6) 

where ω0 is a scalar, and ω is a vector. 
If a pixel with an SMM signal is classified with a probability of p[SMM] = pMM as 

indicating the landmine presence, it is obvious that the probability that it is not associ-
ated with a mine will be 1 – pMM. 

The ω0 and ω parameters in equation (6) are unknown, but they can be restored 
from the training sample which must include pixels of both classes with a mandatory 
known y label for each pixel. 

Let such a training sample of Q pixels size exists. Then the log-likelihood func-
tion (LLF) can be formed [19] as: 

 ( ) ( ) ( )0
1

LLF , 1 ln 1 ln
Q

q q q q

q

y yω ψ ψ
=

 = − − + ∑ω  (7) 
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The ω0 and ω parameters can be restored by substituting in the right part of (6) the 
signal values of the training sample pixels and performing reverse optimization [20]. 

With restored ω0 and ω, the equation (6) allows estimating the pMM probability of 
belonging of any pixel of a multispectral image mosaic to the y = 1 class. In other 
words, it becomes possible to estimate the probability of a landmine presence at the 
current pixel. 

There is a problem with the training sample required in the regression approach 
to classification. The fact is that the terrain elements with landmine and without it are 
very similar in their optical and physical parameters. Therefore, the signal values of 
the pixel-members of both classes intersect to a great degree. In addition, the surveyed 
area is usually quite “variegated” (there may be plots of open soil, different-type and 
different-condition grass, sand, stone drops, etc.). Consequently, the ranges of signal 
values of the pixel-members are, as a rule, non-compact and consist of a set of sepa-
rate spaced subdomains. This problem is well illustrated by Fig. 3, which shows the 
distribution of pixel signals of the actual multispectral image with both landmines and 
background land covers. It is shown in the plane of band reflectance of the first ρ(B1) – 
blue – and fifth ρ(B5) – near-infrared – operating spectral bands of the multispectral 
camera installed at DJI Phantom 4 MS light quadcopter. 

 

Fig. 3 An example of the pixel signals distribution in actual multispectral image frag-

ments with both landmines (red color) and background land covers (green color) 

All foregoing have a negative impact on the classification accuracy. Structuring 
the training sample helps partially overcome this problem, whereby the algorithm 
presented in Fig. 4. 

Suppose a training sample of pixels is structured, including a subset of first class 
(y = 1) and a subset of second class (y = 0). The procedure of iterative clustering by 
unsupervised classification is applied to the elements of each subset, particularly by 
the k-means method [21]. The maximum possible number of iterations is constrained 
by the number of pixels in the subset. 

Each iteration consists of three stages. In the first stage, the number of clusters 
for subset elements is assigned the L. It should be noted that clustering occurs for each 
subset separately and independently. Each cluster is described by a corresponding 
centroid. 
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Fig. 4 Flowchart of the training sample structuring 

The second stage engages the supervised classification when the training sample 
elements are used as objects of classification. The set of centroids, which was deter-
mined in the previous step, was used as a training sample. Logistic regression was also 
chosen as the method of supervised classification. 

Based on the results of the classification, the following parameters are calculated: 
• number of correct decisions about the presence of the mine TP (true positive), 
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• number of correct decisions about the absence of the mine TN (true negative),  
• number of incorrect decisions about the presence of the mine FP (false posi-

tive), 
• number of incorrect decisions about the absence of the mine FP (false nega-

tive). 
In the third stage, the supervised classification results are used to assess the ob-

tained set of centroids in terms of interclass separability. The degree of separability 
called as DP (discriminatory power) is calculated by the expression [22]: 

 
FP

TN

FN

TP
DP lnln +=  (8) 

A structured set of centroids, which provides the maximum DP value, is selected 
for further classification. From now on, this set plays the role of a training sample. 

Pixel-wise classification of MT image mosaic. In computer analysis of MT im-
age mosaic, the possible landmine locations and the pMT probability of each landmine 
detection are determined by local temperature anomalies. To ensure an equal area of 
both anomaly and background, the central sliding window of radius r, calculated with 
the (3), should be surrounded by a ring with additional radius h: 

 ( )2 1h r= −  (9) 

as shown in Fig. 5. 

 

Fig. 5 Sliding window with a surrounding ring 

The simplest case of anomaly detection under the condition of normal distribu-
tions of temperature values in image segments of the target and the background is 
described by the probability [23]: 

 0erf
2

MT

T

T T
p

σ
 −

=   
 

 (10) 

where T0 is the mean temperature in the inner window, T is the mean temperature in 
the surrounding window, σT is the standard deviation of the temperature values in both 

windows, ( ) 2

0

2
erf e d

π

x
z

x z
−= ∫  is the integral error function [24]. 

In the described way, it is possible to move from the point anomalies detection in 
infrared image to statistical anomalies detection in the thermal mosaic that corre-
sponds to the mine segment size [25]. The operations sequence for thermal anomalies 
detection is described by the algorithm flowchart presented in Fig. 6. 
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Fig. 6 Algorithm flowchart for mapping thermal anomalies in the MT mosaic 

When the expected number of pixels G in the image of the mine is set, then the 
radii of the scanning windows r and h are calculated by Eqs (3) and (9). Next, the loop 
scanning of the entire image performs, within which the statistics T0, T, σT of image 
fragments inside sliding windows are estimated and the pMT probability values of 
landmine detection inside current window positions are calculated by Eq. (10). 

Obviously, the pMT probability will decrease if the anomaly center diverts from 
the window center. 

The Fig. 6 algorithm applying to the MT image mosaic pixels allows estimating 
the pMT probability of the landmine presence inside the terrain elements represented by 
the corresponding pixels. 

An example of processing the temperature image obtained from UAV with the 
FLIR One Pro infrared camera is shown in Fig. 7. 

4.7 Decision Making 

According to the results of the classification of digital image mosaics, we have two 
probability distributions: the first one 

 ( ){ }, 1,2, ,MM MM
P p k k K= = ⋯  (11) 

is for MM image mosaic pixels and another one 

 ( ){ }, 1,2, ,MT MT
P p k k K= = ⋯  (12) 

is for MT image mosaic pixels.  
The decision-making procedure for any k-th pixel (k = 1, 2,…, K) based on the 

joint consideration of the probability distributions (11) and (12) includes the following 
steps. 

A combination of probabilities calculated for a pixel by the classification results 
of both image mosaics is formed. Following the [26], the combination can be written as 
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a     b 

Fig. 7 The result of the landmine detection in the thermal infrared image: a – the input 

image in the land surface temperature gradations; b – the distribution of the  

probability of the landmine detection inside a window of an inner radius r = 32;  

lighter color indicates higher probability values 

 ( ) ( ) ( ) ( )1 21 0.5 1 0.5MM MM MT MTu p k u u p k u   − + − +     (13) 

where uMM and uMT are statistical uncertainties; uMM, uMT ∈ [0; 1]. 
The uMM and uMT parameters are involved in equation (13) to consider the aleato-

ry statistical uncertainty, which occurs because the probability values are obtained in 
conditions of insufficient amount of input data. The procedure for determining the 
uncertainty level is described in [27]. The following equation may be written: 

 ( ) ( ) ( ) ( )1 21 0.5 1 0.5MM MM MT MT
u p k u u p k u Π   − + − + =     (14) 

Substituting of (14) the uMM and uMT uncertainties of sensors in the left part, and 
assuming pMM(k) = pMT(k) = 0.5, the П value can be calculated. 
A criterion function is formed: 

 ( ) ( ) ( ) ( )1 21 0.5 1 0.5MM MM MT MTu p k u u p k u Π   − + − + >     (15) 

The decision rule is: the pixel estimates of the pMM(k) and pMT(k) probabilities are 
substituted into the Eq. (15). If the inequality holds, it is decided that there is a threat 
(landmine) in the current terrain element. On the other hand, if condition (15) is not 
met, a decision is made that there is no threat (no landmine). 

Each pixel of the image mosaics passes through step 3, and the decisions are 
made on the state of the current terrain elements; this information is a basis for the 
minefield map restoration. 

4.8 Documenting 

The final data product of the method is a restored map of the minefield, issued accord-
ing to the adopted regulations [28, 29]. In addition, other information obtained from 
aerial imagery may be added upon the customer's request. 

5 Experimental Results 

The testing of the method described above was carried out by detecting dummy 
landmines and landmine groups that were installed at a test ground site in accordance 
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with the relevant engineering manuals, in different conditions of burying and camou-
flage. Several test sites ranging in size from (40 × 30) up to (80 × 60) m were involved 
in experimental landmine detection. Airborne imagers installed onboard of three light 
copter-type UAVs by DJI and Parrot were used for landmine detection [30]. Data from 
the drone's onboard GPS was used for georeferencing the separate frames of aerial 
imagery. 

Airborne imagers set included a P12.4K color digital camera, a P4MS visible and 
near-infrared multispectral camera and a FLIR One Pro thermal infrared camera. 
Flight missions planning, including the flight paths generation according to user-
defined imaging parameters, as well as the image mosaics compilation from the ac-
quired images was carried out automatically using special-purpose DJI GS Pro 
software. 

The study was conducted in the spring-summer season of 2021 and began with 
the orthophotomap compilation over the test site using DJI GS Pro aerial survey mis-
sion planning software for the selected flight profile (see Fig. 2) [31]. The typical 
altitude of aerial imaging for landmine detection hovers around 2-10 m, surveillance 
mosaics were formed from a 50-100 m altitude. 

The aerial imaging altitude H was determined under the condition of acquiring 
a given number of pixels G within the landmine image fragment [32]: 

 0 π

4

l f
H

a G
=  (16) 

where l0 is the diameter of the landmine segment on the ground, f is the focal length of 
the camera optics, a is the photodetector size of the camera’s sensor array. Since the f 
and a parameters are different for multispectral and infrared cameras, the predicted 
altitudes (16) will also be different. Under the experiment, to ensure the same GSD, 
multispectral and infrared image sets were acquired by different drones. 

Both multispectral and infrared cameras are equipped with a built-in self-
calibration subsystems. However, calibration information of DJI multispectral imagery 
is provided as textual annotation data. Therefore, we were forced to develop special 
software for the automatic cropping and converting the raw multispectral images into 
the land surface spectral reflectance distributions. 

Detection of different types of landmines in different backgrounds was performed 
by multispectral and infrared aerial images using specially developed software. Figs 8 
and 9 show some examples of test detection of buried and open landmines in multi-
spectral and infrared images, respectively. Left images are multispectral fragments 
synthesized in pseudo-natural or natural colors; right images are probability distribu-
tions (11), (12). 

In total, 195 multispectral and 108 infrared aerial images of 14 types of anti-
personnel and anti-tank landmines were acquired and processed. A significant part of 
these aerial images was used as a training sample, also to adjust the algorithm parame-
ters, etc. 

Complete sets of images (multispectral + thermal + color) were obtained over 36 
test plots. The decision on threatening parcels (with landmines) detection in the imag-
es was made by substituting each current pair of probability estimates {pMM(k), pMT(k)} 
into the criterial Eq. (15), which, taking into account the experimentally obtained un-
certainty levels uMM = 0.10 and uMT = 0.15 took the form: 

 ( ) ( )0.9 0.05 0.85 0.075 0.225MM MTp k p k Π   + + > =      (17) 
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a     b 

   
c     d 

   
e     f 

   
g     h 

Fig. 8 Examples of landmine detection in multispectral images: a, b – TM-62P3 buried 

landmine, MON-50, MON-90, MON-100 landmines in the grass; c, d – OZM-72,  

TM-62M, TM-72 and TM-62P3 open landmines; e, f – MON-50 landmine in the grass; 

g, h – MON-100 and MON-90 landmines in the grass; a lighter tone indicates the higher 

probability values; Legend: ▬ – existing (detected) landmine, ▬ – false detection
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a     b 

   
c     d 

   
e     f 

Fig. 9 Examples of landmine detection in thermal images: a, b – МОН-100 та МОН-

50 landmine in the grass; c, d – ОЗМ-72 semiburied landmine; e, f – ТМ-62М buried 

landmine; the higher probability values are indicated by the from yellow to red  

palette; Legend: ▬ – existing (detected) landmine, ▬ – landmine detection failure 

The performance of landmine detection was evaluated according to the following 
detection rates: the probability of correct landmine detection TP and the probability of 
false alarm FP: 

 
0

MM
TP FP

M M M
= =

+
 (18) 
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where M0 is the set of actual existing landmines, M is the set of correctly detected 
landmines, M  is the set of false detections; |M| notation means the total number of 
elements in the set М. 

The probability of correct landmine detection over test plots was 0.92, and the 
probability of false alarm was 0.45. 

6 Discussion 

The research outcomes show that the developed method provides a fairly high proba-
bility of correct landmine detection. This fact testifies the future prospects of one’s 
application for the rapid obtaining of up-to-date maps of minefields. 

At the same time, it should be highlighted that such a map cannot be the final 
document for decisions making on the threat presence/absence inside a minefield sub-
plots, especially during the humanitarian demining, where according to the 
International Mine Action Standards (IMAS), it is required a 100 % mine detection 
probability [33, 34]. 

The obtained map can be used only as a geoinformation layer for further 
landmine clearance mission planning and determining the elements priorities within 
a minefield area. Although, of course, the availability of map with the localization of 
threatening subplots will significantly reduce both time and efforts for landmine clear-
ance. 

Unfortunately, the research has shown that the landmine detection false alarms 
frequency is also high. Even though this disadvantage does not pose an additional 
threat to life, it leads to deminer work complications. 

The high frequency of false alarms can be understood as a payment for the fact 
that the method is based on the engagement of optical sensors only. Such sensors are 
not technically complex and costly. Known R&Ds (research and development) show 
that the incorporation of sensors operating in other spectral bands, in particular in the 
radio frequency bands, into the onboard set of sensors can reduce the number of false 
detections of landmines – see, for example [35]. However, due to the technical com-
plexity of such sensors, their mass, and high power consumption, the requirements for 
the mobile platform (UAV) are essentially tightened, and the cost of the entire system 
increases significantly. 

An improvement of the proposed method by developing the task-oriented data-
base with spectral portraits of targets of interest and typical land covers can contribute 
to the efficiency enhancement of remote automated landmine detection. 

7 Conclusions 

The paper proposes a method for minefields mapping with the threatening subplots of 
terrain detection using aerial imaging from the UAV. To simplify the aerial imagers 
set, its operation and data processing, only optical images are used for landmine detec-
tion. 

Algorithms for processing and classifying multispectral and thermal infrared im-
ages are developed. The method has been tested over sites with actual buried 
landmines. 

Authors associate the method’s future improvements with the GPR (ground pene-
trating radar) integration into the onboard aerial imagers set as well as with the 
artificial intelligence tools involvement for the aerial imagery analysis. 
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