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A b s t r a c t :

This contribution is a continuation of the paper [4] (here not defined concepts can be
found there). It uses the results from it and the fact that the basic group of integral operators
contains an invariant subgroup, which allows us to obtain a closed, invertible, reflexive
and normal subhypergroup of the target transposition hypergroup. We will construct a
discrete transformation hypergroup—in fact an action of hypergroup of integral operators
on the space of continuous functions, which are created by Fredholm integral equations of
the second kind, as a phase set.
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1 Preliminaries

Recall first the basic terms and definitions. A hypergroupoid is a pair (H, ·) where
H is a (nonempty) set and · : H × H → P∗(H) (= P(H) r {∅}) is a binary
hyperoperation on the set H . If a · (b · c) = (a · b) · c for all a, b, c ∈ H ,
(associativity), then (H, ·) is called a semihypergroup. A semihypergroup (H, ·) is
said to be a hypergroup if the following axiom a ·H = H = H ·a for all a ∈ H , (the
reproduction axiom), is satisfied. Here, for A, B ⊆ H , A 6= ∅ 6= B we define as
usual A·B =

⋃
{a ·b; a ∈ A, b ∈ B}. A commutative hypergroup (H, ·) satisfying

the so called transposition axiom, i.e., for any quadruple a, b, c, d ∈ H such that
a/b ∩ c/d 6= 0 we have a · d ∩ b · c 6= 0, where a/b = {x ∈ H ; a ∈ x · b} is
called a join space, (see e.g. [2], [3], [12]).

2 Further properties of join spaces of operators

Let us return to the hypergroup constructed in Chapter 3 of [4].
Denote F = {F(λ, K, f ) : K(x, s) ∈ C(J × J ), f ∈ C+(J ), λ 6= 0}, where

F(λ, K, f ) is given by

F(λ, K, f )(ϕ(x)) = λ

∫ b

a

K(x, s)ϕ(s) ds + f (x). (1)

In the sequel the operation “ · ” means

F(λ1, K1, f1) · F(λ2, K2, f2) = F(λ1λ2, K2f1 + K1, f1f2) (2)

(see [4]). In Proposition 1 of [4] it was shown that F with the relation “5” defined
by

F(λ1, K1, f1) 5 F(λ2, K2, f2)

if and only if λ1 = λ2, f1(x) ≡ f2(x) and K1(x, s) 5 K2(x, s)

is a noncommutative ordered group.
Further the hyperoperation “∗” is defined as a union of upper ends:

F(λ1,K1, f1) ∗ F(λ2, K2, f2) = (3)

= {F(λ, K, f ) ∈ F; F(λ1, K1, f1) · F(λ2, K2, f2) 5 F(λ, K, f )}

= {F(λ, K, f ) ∈ F; F(λ1λ2, K2f1 + K1, f1f2) 5 F(λ, K, f )}

= {F(λ1λ2, K, f1f2); K2(x, s)f1(x) + K1(x, s) 5 K(x, s), [x, s] ∈ J × J }.

It was proved that (F, ∗) is a join space, see Theorem 1 of [4].
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The just defined binary hyperoperation determines ternary relation B (to lie
between) on the set F in such a way that[
F(λ1, K1, f1), F (λ2, K2, f2), F (λ3, K3, f3)

]
∈ B whenever

F(λ2, K2, f2) ∈
[
F(λ1, K1, f1) ∗ F(λ3, K3, f3).

Evidently this relation is not symmetrical, i.e., the implication[
F(λ1, K1, f1), F (λ2, K2, f2), F (λ3, K3, f3)

]
∈ B ⇒[

F(λ3, K3, f3),F (λ2, K2, f2), F (λ1, K1, f1)
]

∈ B

is not valid.
Other properties of this relation seem not to be established up to now.

Definition 1. [11], [12] A subhypergroup (S, •) of a hypergroup (H, •) is called
closed if a/b ⊆ S and b\a ⊆ S for all a, b ∈ S,
invertible if a/b ≈ S implies b/a ≈ S, and b\a ≈ S implies a\b ≈ S for all
a, b ∈ H ,
reflexive if a\S = S/a for all a ∈ H ,
normal if a • S = S • a for all a ∈ H .

Note that the notion of being a subhypergroup, and each of the properties
for a subhypergroup in the definition above is self-dual. In any hypergroup,
and invertible subhypergroup is closed. In a transposition hypergroup, a closed
and normal subhypergroup is reflexive. Thus in a transposition hypergroup, an
invertible and normal subhypergroup is closed and reflexive. A normal invertible
subhypergroup can be considered to be a hypergroup-analogy of a normal subgroup
of a group. For a transposition hypergroup, a reflexive closed subhypergroup plays
an analogous role.

The following concepts were defined by James Jantosciak in [11, p. 80].

Theorem 1. Let J ⊆ R and F1 = {F(1, K, f ) : K ∈ C(J × J ), f ∈ C+(J )}.
Let the hyperoperation “∗” be define by (3). The subhypergroupoid (F1, ∗) of the
join space (F, ∗) is a subhypergroup of (F, ∗) and it is closed, invertible, reflexive
and normal.

Proof. The subhypergroupoid (F1, ∗) is a subhypergroup when it satisfies axiom
of reproduction, i.e. F ∗ F1 = F1 ∗ F = F1 for all F = F(1, K, f ) ∈ F1.
a) F(1, K, f ) ∗ F1 ⊂ F1 is evident.
b) To prove F1 ⊂ F(1, K, f ) ∗ F1 let us recall that

F(1, K, f ) ∗ F2(1, K2, f2) =

⋃
K2,f2

{F(1, KL, f2f ) : K2f + K ≤ KL}.
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For any F3(1, K3, f3) ∈ F1 let us choose f2 =
f3
f

and K2 5 K3−K

f
. Then evidently

F3 ∈ F ∗F2 ⊂ F ∗F1. The second equality F1∗F = F1 can be proved analogously.
1. Closeness of (F1, ∗): For any pair of operators F1(1, K1, f1), F2(1, K2, f2) ∈ F1

we have by Lemma 4 from [4]

F1(1, K1, f1)/F2(1, K2, f2) =

{
F

(
1, K,

f1

f2

)
: K 5 K1 − K2

f1

f2

}
∈ F1,

F2(1, K2, f2)\F1(1, K1, f1) =

{
F

(
1, K,

f1

f2

)
: K 5

K1 − K2

f2

}
∈ F1.

It holds for all operators from F1, i.e., the subhypergroup (F1, ∗) is closed.

2. Invertibility of (F1, ∗): Suppose that F1(λ1, K1, f1), F2(λ2, K2, f2) ∈ F are the
operators satisfying

F1(λ1, K1, f1)/F2(λ2, K2, f2) ≈ F1.

By Lemma 4 from [4]

F1(λ1, K1, f1)/F2(λ2, K2, f2) =

{
F

(
1, K,

f1

f2

)
: K 5 K1 − K2

f1

f2

}
∈ F1,

i.e., λ1
λ2

≡ 1, which means λ1 = λ2. Then

F2(λ2, K2, f2)/F1(λ1, K1, f1) =

{
F

(
1, K,

f2

f1

)
: K 5 K2 − K1

f2

f1

}
∈ F1.

Similarly F2(λ2, K2, f2)\F1(λ1, K1, f1) ≈ F1,

F2(λ2, K2, f2)\F1(λ1, K1, f1) =

{
F

(
1, K,

f1

f2

)
: K 5

K1 − K2

f2

}
∈ F1,

i.e., λ1 = λ2. Further,

F1(λ1, K1, f1)\F2(λ2, K2, f2) =

{
F

(
1, K,

f2

f1

)
: K 5

K2 − K1

f1

}
∈ F1.

Thus, (F1, ∗) is an invertible subhypergroup of the hypergroup (F, ∗).
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3. Reflexivity of (F1, ∗): Suppose F(λ, K, f ) ∈ F, then

F(λ, K, f )\F1 =

⋃
{F(λ, K, f )\F2(1, K2, f2) : F2(1, K2, f2) ∈ F1} =

=

⋃
f2

⋃
K2

{
F

(1
λ
, KL,

f2

f

)
: KL 5

K2 − K

f

}

and similarly

F1/F (λ, K, f ) =

⋃
{F3(1, K3, f3)/F (λ, K, f ) : F3(1, K3, f3) ∈ F1} =

=

⋃
f3

⋃
K3

{
F

(1
λ
, KLL,

f3

f

)
: KLL 5 K3 − K

f3

f

}
,

for f3 = f2 evidently

⋃
f2

⋃
K2

{
F

( 1
λ

, KL,
f2
f

)
: KL 5

K2 − K

f

}
=

⋃
f3

⋃
K3

{
F

( 1
λ

, KLL,
f3
f

)
: KLL 5 K3−K

f3
f

}

and we obtain, that (F1, ∗) is reflexive.

4. Normality of (F1, ∗): Suppose F(λ, K, f ) ∈ F, then

F(λ, K, f ) ∗ F1 =

⋃
{F(λ, K, f ) ∗ F2(1, K2, f2); F2(1, K2, f2) ∈ F1} =

=

⋃
f2

⋃
K2

{F(λ, KL, ff2) : KL = K2f + K}

and similarly

F1 ∗ F(λ, K, f ) =

⋃
f3

⋃
K3

{F(λ, KLL, f3f ) : KLL = Kf3 + K3},

for f2 = f3 evidently⋃
f2

⋃
K2

{F(λ, KL, ff2) : KL = K2f + K} =

⋃
f3

⋃
K3

{F(λ, KLL, f3f ) : KLL = Kf3 + K3}

and
F(λ, K, f ) ∗ F1 = F1 ∗ F(λ, K, f )

holds for any operator F(λ, K, f ) ∈ F, hence (F1, ∗) is normal.
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We have verified properties of the corresponding subhypergroups directly.
Nevertheless, invertibility and normality imply closeness and reflexivity—by [12]
or [11, p. 80]. Thus it suffices to prove the first and the second property of the
subhypergroup (G, ∗).

In a similar way we get that the subset of (F, ∗) formed by integral operators
of the form F(1, K, 1), which means operators F(λ, K, f ) where λ = 1, f ≡ 1,
is also a carrier of a subhypergroup of (F, ∗) which is closed, invertible, reflexive
and normal.

It is to be noted that in the case of Volterra integral operators of the convolution
type in [10] there was constructed an inclusion embedding (i.e., an inclusive injec-
tive homomorphism) of the semihypergroup formed by operators commuting with
given Volterra operator into the centralizer hypergroup of certain transformation of
half plain complex numbers.

Recall that by Volterra operator of the convolution type (see e.g. [14]) we mean
operator of the form

V (λ, k, f )(ϕ) = λ

∫ x

0
k(x − s)ϕ(s)ds + f (x) (4)

where all continuous functions ϕ are of exponential order.
The mentioned embedding is carried by classical Laplace transform of the form

L(ϕ) =

∫
∞

0
e−ptϕ(t)dt,

where k, f, ϕ are continuous functions, where ϕ is of the bounded exponential
growth on J = 〈0, ∞).

This construction is based on Theorem 1 proved in [10]. If the improper integral∫
∞

0 e−ptk(t)∗ϕ(t)dt absolutely converges, then applying the Laplace transform to
the convolution of functions k, ϕ we obtain (with respect to the product theorem)

L(k(t) ∗ ϕ(t)) =

∫
∞

0
e−pt

∫ t

0
k(t, s)ϕ(s)dsdt = K(p)8(p).

Consequently, if using the Laplace transform L(f (t)) = F(P ), L(ϕ(t)) = 8(p)

and L(k(t)) = K(p). Then we obtain

L(V (λ, k, f )(ϕ)) = λK(p)8(p) + F(p).

Consider the half-plane of complex numbers � = {z; Rez > 0}. For λ ∈ R+,
K, F ∈ C(�), F(p) is different from 0 for any p ∈ � we define T (λ, K, F )8 =

= λK(p)8(p)+F(p), p ∈ �, 8 ∈ C(�). On the set T (�) of such operators we
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consider the binary operation

T (λ, K, F ).T (µ, S, G)8(p) = T (λµ, λS + K, FG)8 =

= λ2µS(p)8(p) + λµK(p)8(p) + F(p)G(p) =

= T (λµ, K,FG)8(p) + T (λ2µ, S, 0)8(p),

thus T (λ, K, F ).T (µ, S, G) = T (λµ, λS + K, FG).

This is a certain generalization of the concept of translation operators, which
are investigated in paper [8]. In a similar way as in that paper, it is easy to
show in our case as well that our groupoid (T (�), .) is a noncommutative group.
Indeed, in the same way as in the case of (Vc(J ), .), the just defined operation is
associative; the operator T (1, 0, 1), i.e., if λ = 1, K(p) ≡ 0, F(p) ≡ 1 is the unit,
i.e., T (1, 0, 1)8(p) ≡ 1 and T (1, 0, 1).T (λ, K, F ) = T (λ, K, F ).T (1, 0, 1) =

= T (λ, K, F ). For arbitrary T (λ, K, F ) ∈ T (�) its inverse operator is

T −1(λ, K, F ) = T (
1
λ
, −

K

λ
,

1
F

).

Moreover, with the use of suitable ordering on T (�) we obtain a transposition
hypergroup in a similar way as in paper [8]. Define L(V (λ, k, f )) = T (λ, K, F )

if L(V (ϕ)) = T (φ).
The following theorem proven in [10] allows us to construct an embedding of

the centralizer semihypergroup of Volterra convolution operators into the central-
izer hypergroup of the above transformation operators T (λ, K, F ) of the half-plane
�.

Theorem 2. The Laplace transformation defined on the set of Volterra operators
Vc(J ) of the convolution type is an embedding (i.e., an injective homomorphism)
L of the semigroup (Vc(J ), .) into the group (T (�), .) .

In connection with the above considerations and Generalized Product The-
orem (Efros-theorem), see e.g. [13], the following problem arises: If Laplace
transformation of a function f (t) is equal to F(p), i.e., L

(
f (t)

)
= F(p) and

L
(
ϕ, (t, τ )

)
= 8(p)eτq(p), where 8(p) and q(p) are analytical functions, then

L

( ∞∫
o

f (τ)ϕ(t, τ )dτ

)
= 9(p)F

(
q(p)

)
.

The open problem is whether similarly as in the case of Volterra integral operators
the Laplace transform or some of the other classical transform carrying algebraical
embedding a join space into suitable other hyperstructure.
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3 Centralizer transformation semihypergroup
of integral operators

In this section we will construct a discrete transformation hypergroup—in fact an
action of hypergroup of integral operators on the space of continuous functions as
a phase set. To achieve this we create a certain modification of Example 1 from
[9].

Let us recall (compare Proposition 1 of [4]) that (F, ·) is the group of Fredholm
integral operators of the second kind given by (2).

Denote by D
f1,f2
K1,K2

(x, s) the following determinant:

D
f1,f2
K1,K2

(x, s) =

∣∣∣∣ f1(x) f2(x)

K1(x, s) K2(x, s)

∣∣∣∣ .
Lemma 1. Fredholm integral operators F(λ1, K1, f1), F(λ2, K2, f2) are com-
muting in the group (F, ·) if and only if

D
f1,f2
K1,K2

(x, s) = K2(x, s) − K1(x, s)

for all points [x, s] ∈ 〈a, b〉 × 〈a, b〉.

Proof. Let F(λ1, K1, f1), F(λ2, K2, f2) ∈ F be commuting integral operators, i.e.

F(λ1, K1, f1) · F(λ2, K2, f2) = F(λ2, K2, f2) · F(λ1, K1, f1),

F (λ1λ2, K2f1 + K1, f1f2) = F(λ2λ1, K1f2 + K2, f2f1).

Then K2f1+K1 = K1f2+K2, i.e., f1K2−f2K1 = K2−K1, hence D
f1,f2
K1,K2

(x, s) =

= K2(x, s) − K1(x, s) for all elements [x, s] ∈ 〈a, b〉 × 〈a, b〉. Evidently the
procedure can be reversed.

Definition 2. Let X be a set, (G, •) be a semihypergroup and π : X × G → X a
mapping such that

π(π(x, t), s) ∈ π(x, t • s), where π(x, t • s) = {π(x, u); u ∈ t • s)} (5)

for each x ∈ X, s, t ∈ G. Then (X, G, π) is called a discrete transformation
semihypergroup or an action of the semihypergroup G on the phase set X. The
mapping π is usually said to be simply an action.

More generally, it is possible to consider the situation, where the phase space
X is endowed with some additional structure. An interesting case is given in [3],
[5].
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Remark 1. The condition (5) used above is called Generalized Mixed Associativity
Condition, shortly GMAC.

By a centralizer of an element a of the group G we mean—as usual—its sub-
group CG(a) = {x ∈ G; ax = xa}. A centralizer of an element F(λ, K, f ) ∈ F
is a subgroup

CF
(
F(λ, K, f )

)
= {F(µ, L, g) ∈ F; F(λ, K, f ) · F(µ, L, g)

= F(µ, L, g) · F(λ, K, f )} =

= {F(µ, L, g) ∈ F; D
f,g

K,L(x, s) = L(x, s) − K(x, s)}

for any pair [x, s] ∈ 〈a, b〉 × 〈a, b〉.

Definition 3. Let F(λ0, K0, f0) ∈ F be an arbitrary but fixed operator. Denote by
CF(F (λ0, K0, f0)) = CF the centralizer of the operator F(λ0, K0, f0) within the
group (F, ·). Let us define a hyperoperation ? : CF × CF → P∗(CF) as follows

F(λ1, K1, f1) ? F (λ2, K2, f2) =

{F n(λ0, K0, f0) · F(λ2, K2, f2) · F(λ1, K1, f1); n ∈ N0}

for any pair of operators F(λ1, K1, f1), F (λ2, K2, f2) ∈ CF(F (λ0, K0, f0)).

Denote M
(
F(λ0, K0, f0)

)
=

(
C〈a, b〉, (CF, ?), δ

)
where the mapping

δ : C〈a, b〉 × CF → C〈a, b〉 is defined by

δ
(
ϕ, F (λ,K, f )

)
=

(
F(λ0, K0, f0) · F(λ, K, f )

)
(ϕ(x))

= F(λ0λ, Kf0 + K0, f0f )(ϕ(x))

= λ0λ

b∫
a

(
K(x, s)f0(x) + K0(x, s)

)
ϕ(s)ds + f0(x)f (x).

Proposition 1. The system M
(
F(λ0, K0, f0)

)
=

(
C〈a, b〉, (CF, ?), δ

)
is a dis-

crete transformation semihypergroup with the phase set C〈a, b〉 and the phase
semihypergroup (CF, ?).

Proof. We show first, that (CF, ?) is a semihypergroup.
Considering the binary relation r ⊂ CF × CF defined by F(λ1, K1, f1) r

F(λ2, K2, f2) if and only if F(λ2, K2, f2) = F n(λ0, K0, f0) · F(λ1, K1, f1) for
some n ∈ N0, we get without an effort that (CF, r) is a quasi-ordered monoid.
Evidently, the relation r is a quasi-ordering on CF.
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Further, for any triple F(λ1, K1, f1), F (λ2, K2, f2), F (λ3, K3, f3) ∈ CF such
that F(λ1, K1, f1) r F(λ2, K2, f2), i.e.,
F(λ2, K2, f2) = F n(λ0, K0, f0) · F(λ1, K1, f1) for a suitable n ∈ N0, we have
F n(λ0, K0, f0) · F(λ1, K1, f1) · F(λ3, K3, f3) = F(λ2, K2, f2) · F(λ3, K3, f3)

which means (F (λ1, K1, f1) · F(λ3, K3, f3)) r (F (λ2, K2, f2) · F(λ3, K3, f3)).
Similarly
F(λ3, K3, f3) · F(λ2, K2, f2) = F(λ3, K3, f3) · F n(λ0, K0, f0) · F(λ1, K1, f1),
i.e., (F (λ3, K3, f3) · F(λ1, K1, f1)) r (F (λ3, K3, f3) · F(λ2, K2, f2)), therefore
(CF, ·, r) is a quasi-ordered monoid. Now defining a binary hyperoperation “?” by

F(λ1, K1, f1) ? F (λ2, K2, f2) =

{F n(λ0, K0, f0) · F(λ2, K2, f2) · F(λ1, K1, f1); n ∈ N0}

we get

F(λ1, K1, f1) ? F (λ2, K2, f2)

= r
(
F(λ2, K2, f2) · F(λ1, K1, f1)

)
=

[
F(λ2, K2, f2) · F(λ1, K1, f1)

)
r

and by [6, p. 146] Theorem 1.3., or [8] Proposition 1 we obtain that (CF, ?) is a
semihypergroup (non commutative in general).

It remains to show that GMAC (see (5)) is satisfied. Let ϕ ∈ C〈a, b〉 be an
arbitrary function, F(λ1, K1, f1), F(λ2, K2, f2) ∈ CF be arbitrary operators. We
have

δ(δ(ϕ,F (λ1, K1, f1)), F (λ2, K2, f2)) =

= δ(F (λ0, K0, f0) · (F (λ1, K1, f1)(ϕ(x)), F (λ2, K2, f2))

= δ(F (λ0λ1, K1f0 + K0, f0f1)(ϕ(x)), F (λ2, K2, f2))

= F(λ0, K0, f0) · F(λ2, K2, f2) · F(λ0λ1, K1f0 + K0, f0f1)(ϕ(x))

= F(λ2
0λ1λ2, K1f

2
0 f2 + K2f

2
0 + K0f0 + K0, f

2
0 f1f2)(ϕ(x)).

On the other hand for

F = F(λ0, K0, f0) · F(λ2, K2, f2) · F(λ1, K1, f1) =

= F(λ0λ1λ2, K1f0f2 + K2f0 + K0, f0f1f2)

and for an arbitrary function ϕ = C〈a, b〉 we have

F(λ2
0λ1λ2, K2f

2
0 f1 + K1f

2
0 + K0f0 + K0, f

2
0 f1f2)(ϕ(x)) =
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= F(λ0, K0, f0) · F(λ0λ1λ2, K1f0f2 + K2f0 + K0, f0f1f2)(ϕ(x)) ∈

{(F (λ0, K0, f0) · Fn)(ϕ(x));Fn ∈F n(λ0, K0, f0) · F(λ2, K2, f2) · F(λ1, K1, f1)}

=
{
δ(ϕ, Fn); Fn ∈ {F n(λ0, K0, f0) · F(λ2, K2, f2) · F(λ1, K1, f1); n ∈ N0}

}
= {δ(ϕ, Fn); Fn ∈ F(λ1, K1, f1) ? F (λ2, K2, f2)}

= δ
(
ϕ, F (λ1, K1, f1) ? F (λ2, K2, f2)

)
.

Note that transformation semihypergroup M from the above proposition de-
termines in a very natural way two basic topologies on the set of continuous
functions C〈a, b〉. More precisely, the semihypergroup M defines mappings
Cl+, Cl−:P∗(C〈a, b〉) → P∗(C〈a, b〉) by

Cl+(8) =
{
δ(ϕ, F (λ,K, f )); ϕ ∈ 8, F(λ,K, f ) ∈ CF

}
for any ∅ 6= 8 ⊂ C〈a, b〉, Cl+(∅) = ∅ and

Cl−(8) = 9,

δ(9, CF) =
{
δ(ϕ, F (λ,K, f )); ϕ ∈ 9, F(λ,K, f ) ∈ CF

}
= 9,

for any ∅ 6= 8 ⊂ C〈a, b〉, Cl−(∅) = ∅.
It is possible to verify that Cl+ and Cl− are totally additive topological closure

operators.

The theory of hyperstructures finds its applications in such technical models
where multi-valued mapping occurred, i.e., where the result of some operation or
mapping is not a single element but the whole nonempty set of elements. Such
models can be encountered in noncommutative algebra, geometrical structures, in
physics (e.g. nuclear fission, the interaction between a foton with certain energy
and an electron). Another motivation for investigation of hyperstructures yields
from technical processes as a time sequence of military car repairs with respect
to its roadability consequences and its operational behaviour. Moreover, some
ideas leading naturally to multistructures are also coming from quantum mechan-
ics, quantum optics with applications as quantum cryptography or, in particular,
development of quantum computers. The basic idea consist in fact that quantum
objects can be simulated in more different states simultaneously.

The study of integral operators, from which the appropriate hyperstructures are
created, is a part of an integro-differential equations theory. These equations are
used for the modelling and solving of electric circuits with small nonlinearities.
Such structures occur as well in the building industry during calculations of bridge
designs with deflection.
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Fredholm integral equations of the first kind, which are studied on spaces of
appropriate integral operators, serve as models for measurement in various parts
of modern physics, e.g. optics, electricity and magnetism, nucleonics, etc. The
kernel of an appropriate integral equation represents a reaction of an apparatus on
the measured quantity. The right hand side of this equation represents an interaction
of the measured quantity with the apparatus. The aim of the measuring is to set the
physical quantity incorporated in a data contained in an integrand of the integral
operator. The kernel of the integral equation incorporates as well a characteristic
of the used apparatus. Such a procedure has a great usage during the reconstruction
of pictures gained from satellites.

The authors thanks to prof. František Cvachovec for his contribution to im-
provement of this text.
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