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Abstract:  

The paper introduces the analytical method derivation for flight time and flight path 
length in horizontal straight flight. An airplane is considered to be the mass point. 
Aerodynamic characteristics of the airplane are replaced by the parabolic polar curve. 
Engine thrust does not change with flight speed. Working formulas are determined on 
the base of the analytical integration of the airplane motion equation. All solutions are 
performed in general dimensionless shape. Determination of the real airplane 
characteristics requires knowledge of the optimum airspeed at operation conditions.  
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1. Introduction 
Flight time and flight path length at changes of flying speed belong to fundamental 
performance in level straight flights.  For an airplane they are presented usually in the 
form of acceleration and deceleration curves in the row of flight altitudes and required 
flight configurations. Known flight mechanics procedures are used for their 
determination on the base of the mass, aerodynamic and engine characteristics for 
concrete aircraft and definite flight conditions. 

Performance characteristics depend on flight altitude, operating engine mode, 
pod occupation and air brakes position. Engine works at acceleration on maximum 
mode and on idling at deceleration so that accelerating or decelerating force was what 
biggest. Air speed changes are then reached in the shortest time and at the smallest 
flight distance. Deceleration intensity is possible heighten using air brakes. Special 
deceleration case can happen after engine failure on-the-fly, when engine thrust sags 
on zeros and only one force acting in the velocity direction is airplane drag. 

Analytical solution of performance characteristics stems from the dimensionless 
equation of motion of an airplane as the mass point and from simplified airplane 
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characteristics. Aircraft mass is constant, components of aerodynamic force are 
expressed on the basis of the parabolic polar curve and the engine thrust does not 
change with the airspeed. Acceleration or deceleration intensity is then expressed by 
the magnitude of the drag load factor. 

Results of the solution are general explicit dimensionless relations for fast and 
sufficiently exact determination of level straight flights performance. If flight 
configuration does not change, only single dimensionless curves for flight time and 
distance are valid throughout whole flight altitudes range. Real airplane performances 
are obtained then by multiplying calculated data by the scales depending on optimum 
flight speed at flying conditions.  Flight configuration change may be express by the 
help of percent changes of parasite drag coefficient and flight mass.  

2. Equation of Aircraft Motion 
Forces acting on the airplane in level straight flight are shown in Fig.1. Fixed flight 
altitude insures the balance of the lift L and the airplane weight W (1.a).  
 

 
Fig. 1 Forces acting on an airplane 

The tangential force Rt  is expressed as the difference of the engine thrust T and 
the aircraft drag D (1.b). It produces the change of the airspeed. At aircraft 
acceleration is thrust greater than drag and accelerating force is positive, at aircraft 
deceleration thrust is smaller than drag and braking force is negative: 
 WL = , (1a) 

 DTRt −= .  (1b) 

Components of aerodynamic force are expressed in usual way in aerodynamics  

 2

2
1,, VqqScDqScL DL ρ=== ,    (2) 

where cL  and  cD  are the lift and drag coefficients,  S  the wing surface, q  the dynamic 
pressure and ρ is air density depending on flight altitude.  

In the case of parabolic polar curve the resultant drag coefficient is divided into 
two coefficients of parasite drag cD0 and induced drag (A is a parameter of induced 
drag). Polar curve validity is limited by the maximum value of lift coefficient maxLc     

 
2

0 LDD Accc +=  ,            max0 LL cc ≤<  .  (3)  



  53 
 

Level Straight Accelerated Flights   

Power plant unit is characterized at given flight altitude H by fixed average value of its 
thrust  
 ( )HTT = .  (4)  

Force Rt  in the flight direction causes the change of flight speed on Nevton's law 
of motion  

 
tR

t
V

m =
d
d

 .      (5)  

Equation of motion may be generalized by using drag load factor nD [2] that is 
expressed as the ratio of force Rt to the airplane weight  

 W
Rn t

D =   .   (6) 

The equation of motion (5) when divided by the airplane weight W contains on 
their right-hand side term that corresponds to the drag load factor. Generalized 
equations of motion are very frequently used for performance calculations of general 
manoeuvres and also for determination of flight path [1], [2] 

 
Dn

t
V

g
=

d
d1

 ,    (7)    

symbol g in equation (7) denotes gravity acceleration. 
Length of the flight path is expressed as the product of the instantaneous air 

speed and corresponding time  
 tVL dd =  .   (8) 

 

3. Dimensionless Shape of Motion Equation 
Fundamental parameter to transform equation of motion (7) and the kinematic 
condition (8) into the dimensionless shapes is the optimum airspeed of the level 
straight flight at the required flight altitude where simultaneously air density ρ is 
known from the ISA (International Standard Atmosphere),  

 Lop
op Sc

WV
ρ

=
2  ,                   

A
cc D

Lop
0=   .       (9)  

Optimum lift coefficient cLop is determined from the constants of the parabolic polar 
curve (3). The scale for the engine thrust and next forces is the magnitude of the 
airplane minimum drag in the optimum regime. 

Reference parameters denoted as the scale factor (index asterisk) and 
dimensionless variables with upper dash symbol are defined both in the Tab.1:   
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Tab. 1 Scale factors definition 

       Scale factor:      Dimensionless parameters: 

speed       opVV =∗ ,   [ 1−ms ], 

time         
g

V
t op=∗ ,   [ s ] ,                                          

           length     
g

V
L op

2

=∗  , [ m ] . 

  speed         
∗

=
V
VV ,   [1 ],  

          time            
∗

=
t
tt  ,    [1 ] , 

         length         
∗

=
L
LL  ,    [1 ] . 

                                                
Substituting quantities from Tab.1, the equation of motion and kinematic 

condition are transformed into dimensionless form and may be written then in the 
shape  

 ,
d
d

Dn
t
V

=      (9.a)   

 
Dn
VV

tVL
d

=d=d  .  (9.b)  

Accelerating or braking intensity depends at any moment of a flight on the value 
of the drag load factor (6). The drag load factor nD is expressed as the ratio of the 
difference between the engine thrust and the drag to the aircraft weight.  After 
rearrangement may be written in the dependence on the dimensional airspeed and on 
the thrust parameter nR [5] 

 2

24

maxminminmax

12
2

11
V

VnV
KD

D
D

T
KW

DTn R
D

+−
⋅

⋅
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Symbol Kmax  is  so called the maximum lift-drag ratio and  may be determined from 
the known constants of parabolic polar curve (3) 

 Acc
c

K
DDop

Lop

0
max 2

1
==  .   (10.b) 

The thrust parameter is introduced as the ratio of the engine thrust to the minimum 
drag in horizontal straight flight [5] 

  
W
TK

D
TnR max
min

==   .   (10.c) 

Dimensional engine thrust includes both the engine characteristic expressed as the 
ratio of the engine thrust to the aircraft weight T/W (denote sometimes as thrust 
facilities) and the aerodynamic characteristic, the lift-drag ratio Kmax . 

Drag load factor sign tells about acceleration sense. It will be negative in such 
flight regime in which thrust deficit comes on and positive at thrust excess. Drag load 
factor (10.a) may be divided in two components 
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The first component belongs to the airframe (aerodynamic part) and expresses aircraft 
drag contribution. It is always negative. The second part expresses influence of power 
unit thrust (engine part) and it is always positive as far as engine produces thrust. At 
zero trust is zero too.   
 

 
Fig. 2 Drag load factor 

Drag load factor curves in dependence on dimensionless speed for three different 
thrust parameters are stated in Fig.2. At nR < 1 thrust deficit causes aircraft 
deceleration in the whole range of speeds. Situation similar is at nR = 1 except zero 
value of drag load factor when the dimensional speed is equal unity. At nR >1 thrust 
excess exists and aircraft is accelerated in the range (V1,V2). Both boundary airspeeds 
may be determined from condition of zero drag load factor on the base of solution of 
the biquadratic equation (10.a or 10.b): 

 
12

1 −+= RR nnV  ,             12
2 −−= RR nnV .     (11) 

Speeds 1V  and 2V   represent maximum and minimum dimensional airspeed of a 
level straight flight at thrust limitation. Speed dependences on the thrust parameter are 
presented in the Fig.3. If the calculated speed 2V  is less than stall speed then this value 
is not real and corresponding flight regime is on the polar curve over the maximum lift 
coefficient. In such causes minimum speed 2V   must be identify with the stall speed 
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This dimensionless minimum speed of level straight flight  minV  is not only very 
important flight characteristics but also concentrates all constants of the parabolic 
polar curve.  

4. Performance Characteristics 
Level straight flights performance is characterized by flight time a flight distance. 
Initial manoeuvre speed is denoted VI and manoeuvre final speed VF. Flight time is 
determined from equation motion (9.a) after substitution for drag load factor from 
Eq.(10.a) and following integration in the range of manoeuvre speeds 
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Flight length is expressed accordingly using Eq. (9.b)  
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Fig.3 Boundary airspeeds 
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 Tab. 2  Primitive functions  
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Infinite integrals in the integral parts for dimensional time (13) and length (14) 

can be expressed by the help of the elementary functions [3]. Primitive functions of 
these integrals for determination of time Ft and flight path length FL are presented in 
the Tab.2. Their shapes are distinguished for all three relative values of the thrust 
parameter nR. 

Dimensionless deceleration time and dimensionless flight path length can be then 
express as depending on primitive functions for the initial and final manoeuvre speeds 

 ( ) ( )[ ]FtIt VFVFKt −= max2  ,  (15)  

 ( ) ( )[ ]FLIL VFVFKL −= max2  .  (16)  
Computational relations (15) and (16) hold generally for determination 

performance characteristics in horizontal rectilinear unsteady flights. Computational 
terms will be considerably simplified at deceleration with insignificant engine thrust or 
if engine failure occurs during flight (nR=0). Relations of the primitive functions are 
presented separately in this case in Tab.3.  

Tab. 3 Primitive functions at zero thrust parameter 

 
Dimensionless acceleration and deceleration curves are presented together in the 

Fig.4. Acceleration (deceleration) curves give relations between required time, fly 
through distance and flight speed. Acceleration begins from minimum dimensionless 
speed, deceleration from maximum dimensionless speed. Real time and corresponding 
distance at general manoeuvre will be determined from reading off initial and final 
primitive function and multiplication their differences by the scales from Tab.1. 

Deceleration curves hold for zero thrust parameter nR=0, acceleration curves for 
thrust parameter nR=2.5. Polar curve is given by the constants: cD0=0.026, A=0.084, 
cLmax=1.3. These values match maximum lift-drag ration Kmax=10.70 and 
dimensionless stall sped minV = 0.654. 
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Fig.4 Acceleration a deceleration curves. 

5. Drag Load Factor at Configuration Changes 
Change of flight configuration, it means mass difference, pod load or using air brakes, 
happen to changes flight mass about the value Δm and changes of the parasite drag 
coefficient about the value Δcx0.  New variables are denoted by lower subscript "N",    
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Flight mass enhancement evokes at the same real flying speed consonant lift 
coefficient change  

 

 
Flight configuration change impresses also drag load factor magnitude and acting 

tangential force. If the influences of mass and parasite drag changes are investigated it 
is profitable to keep the same scale in dimensionless speed corresponding to original 
configuration (Tab.2).  Relation for drag load factor it is possible then step by step 
adjust 

 
Fig.5 Influence of configuration change 

Introducing original dimensionless speed the resultant relation for new drag load 
factor is  
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Influences of mass and parasite drag coefficient changes on aerodynamic part of  
drag load factor (10.d) are presented in Fig.5 

6. Calculation at Changed Configuration 
At practical utilization of integral formulas for calculation flight time (15) and flight 
distance (16) with changed flight configuration it is necessary respect new reference 
values corresponding to the new configuration. Configuration change varies generally 
airplane shape. Thereby changing the polar curve also change characteristic points on 
it. Under assumption of the same value of induced parameter new value of the 
optimum lift coefficient (9) and lift-drag ratio may be expressed as relations  
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Thereby referential speed changes as well (9) and its new value will be 

 

 

 
Minimum dimensionless speed (12) is effected only by parasite drag change and 
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 The trust parameter is also altering in spite of preservation original value of the 
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7.  Conclusion 
Aircraft performance in horizontal straight flights with acceleration (positive or 
negative) belongs to fundamental aeroplane characteristics. In flight manuals are 
usually presented in forms of acceleration and deceleration curves in a row of flight 
altitudes for choice flight configurations. 

Mathematical model of an airplane in this paper is considered to be a mass point 
with constant mass. Such model is commonly used for performance analyses.  
Airplane is characterized by two points of parabolic polar curve (parasite drag 
coefficient, induced drag parameter) limited by value of maximum lift coefficient, 
engine thrust magnitude at flying altitude and flying mass. Formulas for calculation 
performance characteristics are derived on basis analytical integration of the equation 
of motion. 

Manoeuvre characteristics, acceleration or deceleration time and corresponding 
flight distance at flight speed change are in the form of relatively simple formulas 
depending on thrust deficit or excess and on initial and final speeds. All derivations 
are consistently performed on generalized dimensionless shape and results of solution 
are expressed in dimensionless shape, too.  

Introducing dimensionless formulation generalizes achieved results without detail 
knowledge aircraft characteristics and operation height. Only one final curve is valid if 
configuration stays fixed. To recalculate dimensionless results on real (dimensional) 
values just knowledge of optimum airspeed is requisite at required altitude. Utilizing 
presented procedure for other flight configuration consists in descending reduction of 
the optimum speed, the maximum lift-drag ratio and the engine thrust parameter 
depending on percentage changes of the mass and the parasite drag coefficient 
regarding to original configuration. 

Working formulas make possible quickly pass judgment on airplane acceleration 
and deceleration. They may be completed about fuel consumption during manoeuvre. 
Meaningful information is also possible to determinate a maximum time to keep 
aircraft on rectilinear horizontal flight after engine failure. This statement presents 
important information about remaining time reserve, which pilot can employ for his 
decision in given situation. 

Analytical solution is valid for acceptable assumptions on aircraft aerodynamic 
characteristics. At higher airspeeds when aerodynamic characteristics of aircraft 
depend significantly on Mach number, assumptions of the solution are not fulfilled. It 
is necessary to determine flight course by numerical procedures - modelling of flight 
path. This approach requires code elaboration and airplane characteristic 
approximation. Nevertheless, even in these cases the presented results offer valuable 
information about mentioned characteristics. The accuracy of results is effected in 
these cases by a compensation manner of real polar curves with compressibility 
influence by means of only one parabolic polar.  
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