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Abstract: 

The purpose of the article was to find the inner properties and regularities of anti-
aircraft missile grouping’s air defense battle, and based on these regularities to develop 
and evaluate the adequacy of models as tools for forecasting the results of a battle. To 
achieve the goal, an example of a real battle and a special model development method 
were used. The method made it possible to identify the main properties and the inner law 
of battle, to select a statistically valid mathematical modeling tool in the class of Markov 
processes with continuous time and discrete states, to develop the desired models with 
an analytical representation of the inner law of battle, to check their adequacy and to 
evaluate the accuracy of forecasting by models using the example of a real air defense 
battle.  
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1 Introduction 

In the course of hostilities, the task of protecting important objects of the state and 
groupings of troops from air strikes is assigned to the anti-aircraft missile (AAM) 
forces as part of anti-aircraft missile brigades, regiments and subunits, which are de-
ployed in advance in battle formations in positional areas and form an anti-aircraft 
missile grouping (AAMG). The armament of each subunit includes a surface-to-air 
missile system (SAMS) of a specific type with a stock of anti-aircraft guided missiles, 
means of radar reconnaissance and identification of aircraft nationality, means of re-
ceiving target designation and communication means.  

The parameters of the combat order of the AAM grouping are determined by the 
requirement to form an entire high-altitude zone of fire in the defended airspace, with the 
provision of mutual cover for subunits at extremely low altitudes and with a sufficient 
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Nomenclature    

Bounds of intervals in the sample ∆tMAA.i a∆ Probability of the battle model state Sij Pij 

Bounds of intervals in the sample ∆tSAM.i b∆ First derivative of the state probability Pij Ṗij 
Increment of normalized value parameter D(n*) Probability of aircraft shot down Psda 
Second remarkable limit (e = 2,71828…) e Number of freedom degrees r 
Intensity of the enemy aircraft flow I Model state when i SAM systems are 

damaged and j SAMS are in the battle 
Sij 

Intensity of MAA flow for one SAMS I1 Current time t 
Applying the math expectation operation to a 
random variable in square brackets 

M [Nasd] Mathematical expectation of the separate 
fire contact duration 

Tavr 

Mathematical expectation operation of the 
damaged SAM systems number 

M [nd.S] Interval end time tend.i 

Conditional math expectation of j number 
events in the presence of event i 

M[j|i] Duration of separate fire contact Trandom 

Normalized value of the damaged SAM 
systems number math expectation 

n* Interval start time tst.i 

Derivative of math expectation normalized 
value of damaged SAMSs’ number 

ṅ* Airstrike duration Tstr 

Derivative of math expectation normalized 
value of fire contacts’ number 

ṅ*
fc Normalized value of math expectations of 

fire contacts and parties’ losses number 
w 

Mathematical expectation of the battle con-
tacts’ normalized number 

n*
fc Significance level in assessing the truth of 

the result 
α 

Normalized value of the number of the 
mathematical expectation of shot down 
aircraft  

N*
sda Relative error value ∆ 

Initial number of SAM systems in air defense 
grouping 

n0 The time interval of the i-th MAA ap-
pearance 

∆tMAA.i 

Mathematical expectation of the damaged 
SAM systems number 

nd.S The duration of shooting on i-th MAA by 
SAM system 

∆tSAM.i 

Mathematical expectation of the damaged 
SAM systems number during one fire contact 

nd.S.1 Parameter of the exponential distribution 
law 

µ 

Mathematical expectation of separate battle 
contacts number 

nfc System load factor ρ 

Mathematical expectation of the fire contacts 
limiting number until the moment of dam-
aged all SAM systems in grouping 

nfc ∞ Pearson’s criterion χ 2 

The amount of MAA in airstrike NMAA Critical distribution point of χ2 χ2
Critical 

Mathematical expectation of shot down 
aircraft number 

Nsda A measure of the degree coincidence of 
exponential distribution law and the 
distribution law in the sample of time 
intervals between MAA in an airstrike 

χ2
Exp.MAA 

Mathematical expectation of downed MAA’s 
limiting number until the moment of all SAM 
systems in grouping are damaged. 

Nsda ∞ A measure of the degree coincidence of 
exponential distribution law and the 
distribution law in the sample of fire 
contacts duration 

χ2
Exp.SAMS 

Mathematical expectation of shot down 
aircraft number during one fire contact 

Nsda.1 A measure of the degree coincidence of 
normal distribution law and the distribu-
tion law in the sample of time intervals 
between MAA in an airstrike 

χ2
Norm.MAA 

Conditional probability of j-th event when  
i-th event occurs 

P(j|i) A measure of the degree coincidence of 
normal distribution law and the distribu-
tion law in the sample of fire contacts 
duration 

χ2
Norm.SAMS 

Probability of damage to SAM system during 
battle contact 

P* the lesion intensity in the presence of q 
defeated SAMs 

ηq 

 

coefficient of the AAM systems zones of fire overlapping in the conditions of their 
possible destruction. 

In turn, the air adversary, as a rule, has some information about the combat for-
mation of the AAM grouping, and plans the parameters of the air strike – the 
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composition, combat formation of means of air attack (MAA) and the procedure for 
overcoming the defended airspace, using radar counteraction and SAM systems fire 
damage with the entry into the SAM subunits zones of fire and without it.  

The AAM grouping performs a combat mission by conducting air defense battle, 
which includes a set of consecutive and simultaneous air defense battles (fire contacts) 
of the SAM subunits with air targets. The moments of the beginning and end of each 
fire contact and the possible losses of parties are not known in advance, which makes 
each realization of fire contact and air defense battle of AAM grouping as a whole 
unique. 

When building the battle formation of an AAM grouping, the practical problem 
of forecasting the values of the following parameters is solved: the expected losses of 
SAM systems during an air defense battle, assessing the number of fire contacts, the 
sufficiency of the SAM subunits in battle formation to repel the first and subsequent 
attacks of enemy’s MAA, taking into account possible losses of SAM systems, as-
sessing the sufficiency of the stock of anti-aircraft guided missiles, as well as 
assessing the losses and capabilities of an air enemy to deliver repeated air strikes. The 
noted parameters are used to evaluate the performance indicators of the AAM group-
ing. 

As a result, the actual problem arises of finding a stable inner regularity of air de-
fense battle and, on its basis, building models that are adequate enough to forecast the 
values of noted indicators. 

2 Preliminaries and Related Works 

According to the composition of the mathematical tools used, the well-known works on 
modeling the actions of SAM systems for air defense and anti-missile defense can be 
divided into several categories. Thus, when constructing models for assessing the effec-
tiveness of air defense and missile defense of ground objects [1-4] and a grouping of 
surface ships [5], the mathematical apparatus of queuing theory [1, 5], game theory [2], 
Petri nets [4], as well as the idea of heterogeneous networks [3] were used. 

At the same time, the authors intuitively believe that the chosen mathematical 
apparatus corresponds to the processes of air defense battle of AAM grouping.  How-
ever, the listed mathematical methods do not take into account the main factor of air 
defense battle – the possibility of SAM systems damage, which makes the noted mod-
els devoid of adequacy to real combat processes. 

Therefore, the purpose of the article is to identify the essential inner properties 
and regularity of air defense battle of AAM grouping, and based on these results, to 
develop and assess the adequacy of the relevant models as tools for forecasting the 
results of the battle. 

To achieve the noted goal, we have used elements of a special technology for 
models’ development [6] and introduced a system of notations (Nomenclature) for 
variables, which we will use in further reasoning. 

3 Research Results 

3.1 The Main Features of the Air Defense Force SAM Grouping Battle 

In order to identify the main features of the real process, let us consider the dynamics 
and results of air defense battle in the Suez Canal zone on June 30, 1970 [7], presented 
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in Fig. 1 and in Tab. 1. In order to gain air superiority in this region, at 18.31, an air 
enemy suddenly imposed a battle on an AAM grouping consisting of thirteen SA-2 
type SAM systems and three SA-3 type SAM systems, reinforced with portable SAM 
systems subunits and deployed in battle formation (Fig. 1a).  

Let’s briefly trace the battle development. The first group of MAA, consisting of 
4 aircraft (2 – Skyhawk and 2 – Phantom), at an altitude of 50 meters, under the cover 
of the terrain, entered the grouping’s deployment area. One aircraft was shot down by 
a portable SAM system, the second aircraft was unsuccessfully shot upon by SAMS 
#12 SA-3 type. The non-hit aircraft of the first group attacked and hit the SA-2 SAMS 
#13 and left the zone of fire of AAM grouping. 

 

Fig. 1 Scheme and parameters of a real air defense battle on 30.06.1970 in the Suez Canal 
zone: a) a map-diagram of the battle dynamics; b) the MAA strike’s height-time diagram; 
c) the SAM affective areas structure; d) total affective area of SAM unit at MAA No 5 flight 
altitude; e) final battle results and designations on the map-diagram [7] 

At this time, the subunits of the AAM grouping were put on alert. Therefore, the 
second group of aircraft, which entered the fire zone of grouping on the opposite flank 
and at an altitude of 400 meters, was met by fire from two SA-2 SAMS (#3 and #7). 
One of the attacking planes was shot down by SA-2 SAMS #7. Its partner refused to 
carry out the combat mission, turned around and quickly left the grouping’s zone of 
fire. The remaining two aircraft were unsuccessfully shot upon by SA-2 SAMS #4 and 
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SA-2 SAMS #1, continued flying, attacked and hit SA-2 SAMS #3, then they were 
unsuccessfully shot upon by SA-2 SAMS #2 and quickly left the groupings fire zone.  

The further development of the battle can be traced according to the map-scheme 
(Fig. 1a), according to the height-time diagram (Fig. 1b) and according to Tab. 1. Each 
time, depending on the altitude of aircraft flight, the fire zone range of each SAM 
systems was changed in accordance with its characteristics (Fig. 1c), which led to 
changes in the grouping’s effective zones coefficient of overlapping (Fig. 1d) and to 
changes in the degree of aircraft accessibility to be shot upon by AAM grouping. 

Tab. 1 Estimates of a real (Fig. 1) battle’s current and integral parameters 

# 

The SAMS unit air defense  
battle events time, minutes 

Battle participants’ 
numbers 

Losses in  
the battle  
contact 

# 

Integral parameters  
of SAMS unit’s  
air defense battle Start (&MAA) End ∆tSAMS SAMS MAA 

1 2.00 3.00 4.00 5 6 7 8 9 10 
1 0.50 1.23 0.73 Portable 1 1 aircraft 25 nfc 22 
2 2.02 2.93 0.91 12 1 — 26 nd SAMS 4 
3 3.28 3.63 0.35 13 1 SAMS #13 27 Nsda 5 
4 3.02 3.70 0.68 3 2 — 28 P* 0.181818 
5 2.96 4.03 1.07 7 2 1 aircraft 29 Psda 0.227273 
6 3.47 4.13 0.66 4 2 — 30 n0 16 
7 2.40 4.30 1.90 1 2 — 31 D(nfc) 0.011364 
8 3.81 4.43 0.62 3 2 SAMS #3 32 D(nd SAMS) 0.062500 
9 4.53 4.93 0.40 2 2 — 33 D(Nsda) 0.058000 

10 7.74 8.63 0.89 14 3 — 34 nfc ∞ 88 
11 8.42 8.73 0.31 15 3 — 35 Nsda ∞ 20 
12 6.84 9.10 2.26 8 3 1 aircraft Estimates with inner law 
13 8.82 9.43 0.61 15 3 SAMS #15 36 w (44) 0.251485 
14 14.26 15.11 0.85 11 4 1 aircraft 37 nfc 22.130652 
15 15.23 15.80 0.57 10 4 1 aircraft 38 nd.S 4.023755 
16 14.70 16.23 1.53 9 4 — 39 Nsda 5.029694 
17 20.08 20.40 0.32 14 5 — 40 ∆  0.593873% 
18 20.60 20.60 0.25 Portable 5 1 aircraft 41 χ 

2
Exp.SAMS 3.945236 

19 20.63 21.00 0.37 14 5 SAMS #14 42 χ 
2

Norm.SAMS 7.597282 
20 19.66 21.53 1.87 10 5 — 43* χ 

2
Exp.MAA 1.675774 

21 34.08 34.47 0.39 5 6 — 44* χ 
2

Norm.MAA 32.963587 
22 33.46 35.10 1.64 9 6 — 45* α 0.050000 
23 40.25 40.50 0.25 7 7 — 46* χ 

2
Critical (r = 1, α) 3.890000 

24 39.92 41.10 1.18 11 7 1 aircraft 47* χ 
2

Critical (r = 2, α) 5.990000 

*Note.  χ 
2

Norm.SAMS = 7.597 > 3.89    χ 
2

Norm.MAA = 32.96 > 3.89   a∆ = (0.02; 0.263; 0.4; 1.08; 6.83) 
            χ 

2
Exp.SAMS = 3.945  < 5.99     χ 

2
Exp.MAA = 1.675  < 5.99    b∆ = (0.25; 0.53; 0.84; 1.34; 2.26) 

 
With a short break, the fight lasted 44 minutes. As a result (Fig. 1g), subunits of 

AAM grouping made 22 fire contacts (Tab. 1 No 25). Out of the 26-enemy aircraft, 
5 aircraft were shot down (Tab. 1 No 27) by SA-2 and SA-3 type SAMS subunits and 
two aircraft were shot down by portable SAMS. Air enemy managed to hit 4 SAM 
systems (Tab. 1 No 26). 

The considered description (Fig. 1 and Tab. 1) makes it possible to select the fol-
lowing significant features of the AAM grouping air defense battle. 

From the point of AAM grouping view, MAA operated in groups with a previ-
ously unknown (random) strength, in a previously unknown place and time of entry 
into the fire zone of AAM grouping and individual SAM systems. 

The range of each SAM system’s fire zone was determined by its characteristics 
(Fig. 1c) and changed each time, depending on the altitude of enemy aircraft, which 
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led to unpredictable changes in the grouping’s total fire zone (Fig. 1d) and its overlap 
coefficient. 

Enemy aircraft, at best, carried out one attack upon SAMS, and did not remain in 
the zone of fire for repeated battles, which allows us to assert the presence of fuel and 
ammunition supply on the MAA board based on one attack on a ground target, since 
an increase in weight reduces MAA maneuverability and increases its vulnerability. 

The main repetitive element of the AAM grouping’s battle is the air defense bat-
tle (fire contact) of a single SAMS subunit. The start and the end times and the results 
of each battle are not known in advance – they are random. At the same time, the out-
comes of each battle can be: 

• an enemy aircraft downed (with a probability of Psda), 
• an enemy aircraft not downed (with a probability of 1 – Psda), 
• a SAM system destroyed (with probability of P*), 
• a SAM system not destroyed (with probability of 1 – P*), 
• combinations of outcomes 1-4. 

The main parameters that determine the development of AAM grouping air de-
fense battle in time are random time intervals between the start of individual fire 
contacts (SAMS subunits air defense battles) and the duration of such contacts. 

3.2 Inner Law of Air Defense Battle  

The considered example allows us to formulate a system of hypotheses about the 
AAM grouping’s air defense battles’ essential properties. 

• The result of each battle of a SAMS subunit is not known in advance (random) 
and may include both the defeat of an enemy aircraft and the defeat of SAM 
system. 

• Enemy aircraft have a fuel and ammunition supply on board per one attack, and 
do not accumulate in the AAM grouping fire zone. 

• Each battle of AAM grouping subunit develops in time as a random process, for 
which the start and the end points are not known in advance (are random). 

• In the common zone of fire of several SAM systems, the shot upon the next en-
emy aircraft is possible by any free SAM system (the effect of mutual 
assistance in the AAM grouping). 

• The combat order of enemy aviation may include groups of aircraft operating 
sequentially and simultaneously, creating a random flow of “requests for ser-
vice” for the AAM grouping, with an unknown number of aircraft in each group 
(the property of MAA’s not ordinary flow). 

• In the general zone of fire, an aircraft can be shot upon only by that free SAM 
system, through the zone of fire of which the aircraft trajectory passes, which 
leads to the effect of incomplete accessibility of the air defense grouping. 

To search for the inner law of AAM grouping air defense battle, we will examine 
the first three hypotheses about its most essential properties. To this end, we will find 
the mathematical expectation of the enemy aircraft shot down number Nsda.1 and the 
SAMS damaged number nd.S.1, first for one air defense battle of the SAMS subunit, as 
the limit to which the mean value of a sample of random variables tends when the 
sample size tends to infinity, and whose useful properties are known, given, for exam-
ple, in [8] 
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 ( )sda.1 sda sda sda1 0 1N P P P= ⋅ + ⋅ − =        ( )* * *
d.S.1 1 0 1n P P P= ⋅ + ⋅ − =  (1) 

The desired variables coincided with the probability of shooting down an enemy 
aircraft and hitting SAM system, respectively. 

Then let us suppose that by the time t of the battle, an average number of SAMS’ 
battles equaled to nfc. For convenience, let us use complete and simplified notations of 
the mathematical expectation of the enemy planes number, downed by time t, as 
M [Nsda] = Nsda and damaged SAM systems as M [nd.S] = nd.S, and we obtain 

 [ ] [ ]
fc fc fc

sda sda.1 sda.1 sda sda fc sda sda fc
1 1 1

then

n n n

i i i

M N M N M N P P n N P n
= = =

 
 = = = = =
  
∑ ∑ ∑  (2) 

 [ ] [ ]
fc fc fc

* * *
d.S d.S.1 d.S.1 fc d.S fc

1 1 1

then

n n n

i i i

M n M n M n P P n n P n
= = =

 
 = = = = =
  
∑ ∑ ∑  (3) 

Next, let us take into account the limited number n0 of SAM systems within the 
grouping of SAM unit and the condition when every SAM system may be damaged by 
fire of a hostile aircraft during each separate air-defense battle. And let us tend the 
fight time to infinity, provided that SAM subunits have an unlimited anti-aircraft guid-
ed missiles number and the number of hostile planes, that take turns entering the 
battle, is not limited (Fig. 2) either.  

 

Fig. 2 Air Battle Limit Conditions 

Then, with time, all n0 SAM subunits within the SAM grouping will be damaged. 
At that moment, the number of air-defense battles nfc will reach its limit nfc ∞ value 

 ( )d.S 0lim
t

n t n
→∞

=            ( )fc fclim
t

n t n ∞→∞
=  (4) 

Let us substitute the limiting values of nd.S and nfc from Eq. (4) into the left and 
right part of expression Eq. (3) and find an estimate of the mathematical expectation of 
the maximum number of separate air defense battles until the moment of defeat of all 
the SAM systems within the SAM subunits grouping, as well as the maximum number 
of air defense battles for one SAM subunit. 

 *
0 fcn P n ∞=    then   0

fc *

n
n

P
∞ =    and   ( )fc 0 *

1
1n n

P
∞ = =  (5) 

It is not difficult to verify the correctness of the Eq. (5) physical meaning. If the 
probability of a SAM subunit defeat in one air defense battle is equal to one, i.e., 
P* = 1, then the mathematical expectation of separate air defense battles number will 
coincide with the number of SAM subunits n0 within the SAM subunits grouping. 

Substituting the value of the variable nfc ∞ from Eq. (5) into the right part of 
Eq. (2), let us find the limiting value of the mathematical expectation of number Nsda ∞ 
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of downed enemy planes until the moment of all SAM subunits damaged within the 
SAM subunits grouping: 

 sda
sda sda fc 0 *

P
N P n n

P
∞ ∞= =  (6) 

Let us use the main ideas of [6] and turn to the relative variables of the separate 
air defense battles number and the casualties of the parties: 

 ( ) ( )fc*
fc

fc

n t
n t

n ∞
=    ( ) ( )sda*

sda
sda

N t
N t

N ∞
=    ( ) ( )d.S*

0

n t
n t

n
=  (7) 

If we divide the left and right sides of the right expression in Eq. (3) by the num-
ber n0 of SAM subunits within the grouping’s SAM subunits and take into account the 
Eq. (7), we can obtain an unexpected result – the Eq. (8) of the relative values of the 
mathematical expectations of damaged SAM subunits’ number n*(t) and the number of 
separate air defense battles n*

fc (t) 

 
( ) ( ) ( )*

fc fcd.S

*
0 0 0 /

P n t n tn t

n n n P
= =     then    ( ) ( ) ( )fc* *

fc
fc

n t
n t n t

n ∞
= =  (8) 

Let us multiply the numerator and denominator of the right side in the last Eq. (8) 
by the probability Psda of the enemy plane shot down as a result of a separate air de-
fense battle, and find Eq. (9):  

 ( ) ( ) ( ) ( )sda fc sda* *
sda

sda fc sda

P n t N t
n t N t

P n N∞ ∞
= = =  (9) 

Equations (8) and (9) are obtained on the basis of the most essential hypotheses 
1-3 for the battle processes by using admissible operations with mathematical expecta-
tions [8] of random variables which allow us to formulate an inner law of air defense 
battle. 

A consequence of hypotheses 1-3, which concern the most significant features of 
air defense battles, is the equality of the relative values of the mathematical expecta-
tions of the number of separate air defense battles and the casualties of the parties at 
any moment of air defense battle. 

 sda fc( ) ( ) ( ) ( )n t N t n t w t∗ ∗ ∗= = =  (10) 

In this case, the absolute values of these parameters can have different meanings 
depending on the conditions of the battle. 

For the extreme values of time t, it is easy to verify Eq. (10). Indeed, at the be-
ginning of the battle, all variables (7) in Eq. (10) are strictly equal to zero. At the time 
of all SAM subunits’ defeat, the values of all these variables become equal to one. 

If in the process of verification of the model developed below, Eq. (10) of the 
relative casualties of the parties is/were found, such a model can be considered ade-
quate to a real air defense battle with the accuracy of hypotheses 1-3 on the most 
essential properties of air defense battle processes. Otherwise, the model adequacy 
becomes doubtful and the application of such a model becomes inappropriate. 

Let’s go back to the battle example (Fig. 1, Tab. 1) and note that at the moment 
of each end of the battle, the normalized values in Eq. (7), in the event of an enemy 
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aircraft and/or SAM system being hit, will increase (Fig. 3) by the corresponding val-
ue (Tab. 1, No 31-33): 

 ( )
*

*
fc

fc 0

1 P
D n

n n∞
= =             ( )*

0

1
D n

n
=           ( )

*
*
sda

sda 0 sda

1 P
D N

N n P∞
= =  (11) 

We use the least squares method and obtain smoothed representations of these 
values and the relative losses w(t) of the sides (Fig. 3) for the considered (Fig. 1) ex-
ample 

 
* *
fc sda
*

( ) 0.0831 ln 0.0703 ( ) 0.0886 ln 0.0976

( ) 0.0880 ln 0.0604 ( ) 0.0866 ln 0.0761

n t t N t t

n t t w t t

= ⋅ − = ⋅ − 


= ⋅ − = ⋅ − 
 (12) 

Equations (5)-(7) make it possible to find estimates of the absolute values for the 
mathematical expectations of the number of air defense battles and losses of the parties 

 ( ) ( )fc fcn t w t n ∞=           ( ) ( )sda sdaN t w t N ∞=         ( ) ( )d.S 0n t w t n=  (13) 

At the time of the end of air attack repelling (t = 44 minutes), you can find the 
value of relative w(44) and absolute losses of the parties (Tab. 1, No 36-39), which 
turn out to be overestimated by 0.59 % (Tab. 1, No 40) relative to real values due to 
the lack of the fifth and sixth hypotheses consideration. 

However, the fact of a relatively exact coincidence of the estimates obtained with 
the real results, testifies in favor of the correctness of the found air defense battle inner 
law Eq. (10). In order to obtain the possibility of a practical application of the found 
law, it is necessary to find a variant of its analytical description. 

 

Fig. 3 Dependence of the sides’ relative losses on the battle time 

3.3. The Simplest Model of Separate Air Defense Battles 

The adequacy of the battle model is possible [6] only when choosing a mathematical 
apparatus that corresponds to the laws of distribution of its main random parameters 
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that determine the development of the battle – the intervals between the entry of the 
MAA into the fire zone (Tab. 1, column 2, ∆tMAA.i = tst.i+1 – tst.i) and the duration of the 
SAM systems firing cycle (Tab. 1, column 4; ∆tSAM.i = tend.i – tst.i). 

The results of evaluating possible laws of distribution for each sample of marked 
random variables according to the Pearson criterion (Tab. 1, No 45-47 and Note – 
criterion χ  

2) determine the need to reject the hypothesis of their normal distribution 
and to accept the hypothesis of their exponential integral distribution law. 

As a result, the model of combat operations (sequences of battles) of a separate 
SAMS subunit should be built in the class of Markov processes with continuous time 
and discrete states. 

In order to find an analytical description of the parties normalized losses parame-
ter w(t), as the first step, we will build a model for the key element to fight off the 
enemy MAA blow – for an air defense battles sequence of one-channel SAM system 
with enemy aircraft flow of intensity I single planes per minute. 

In order to build a model, let us list possible states Sij of SAM subunit during the 
battle (during fight off the enemy air blow), essential for the purposes of its actions, 
that is, those states that differ in the possibility of opening fire at the “nextˮ MAA.  
In the state designation Sij, the first index i is used to indicate the number of damaged 
SAM subunits in this state, the second index j is used to indicate the number of hostile 
airplanes being fired at in this state: 

• S00 – SAM subunit is not damaged, and is free, 
• S01 – SAM subunit is not damaged, and is firing at one hostile airplane, 
• S10 – SAM subunit is damaged and can’t shoot the hostile planes.  

We can obtain the diagram of the individual SAM subunit’s air defense battle 
simplest model (Fig. 4), where the transition from the state S00 to the state S01 is possi-
ble upon detection of the next hostile airplane and is characterized by the intensity 
(“frequency”) of the fire contacts I. 

Each air defense battle can continue for random time Trandom, that has the expo-
nential law with the mathematical expectation Tavr, with µ parameter and with the 
intensity I of air defense battles occurrence: 

 [ ]
str

MAA

avr
avrrandom

1

T

N
I

T
TTM === µ  (14) 

 

Fig. 4 Diagram of the simplest model of SAM system air defense battle  

Each air defense battle can result in the defeat of the SAM system with the prob-
ability P* and the process transition (Fig. 4) from the state S01 to the state S10, or with 
the probability (1 – P*) it can have a successful outcome for the SAM system, which 
leads to the transition from the state S01 to the state S00. 

The exponential distribution of random variables in the battle process under con-
sideration makes it possible to set up a system of Kolmogorov-Chapman differential 
equations [9] for the probabilities Pi  j of the states Si  j of the battle model (Fig. 4), 
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where, for convenience, let us denote derivatives by a point over the probabilities of 
the states and omit the dependence of probabilities on time as follows: 

 00 00 01 01 01 00 10 01(1 )Р I P Р P Р P I P Р Р Pµ µ µ∗ ∗= − ⋅ + ⋅ − ⋅ = − ⋅ + ⋅ = ⋅ ⋅ɺ ɺ ɺ  (15) 

Let us integrate the equations’ system (15) under initial conditions: 

 ( ) ( ) ( )00 01 100 1 0 0 0P t P t P t= = = = = =  (16) 

We will get 
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where  
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The mathematical expectation of the separate air defense battles number nf c (of 
the attacked enemy airplanes) by the time of the fight off enemy air strike t will be 
determined taking into account the time of the SAM system’s stay in the occupied 
state S01 and its “productivity”µ 

 ( ) ( ) ( )2 1
fc 01 1 2

0

1 1
d 1 e e

t
t tn t P t

P

λ µ λ µµ τ λ λ
α∗

 = = − −  
∫  (19) 

3.4. Verification of the Air Defense Battle Simplest Model 

To verify the simplest model Eqs (17)-(19), let’s find the mathematical expectation of 
air defense battles’ maximum possible number for the entire time up to the moment of 
the SAM system’s defeat. It can be found, passing to the limit in the Eq. (19) 

 ( )fc fc

1 1 1
lim 1 0
t

n n t
P Pα∞ ∗ ∗→∞

 = = − ⋅ = 
 

 (20) 

Let us note that the resulted Eq. (20) has coincided with the value of Eq. (5) ob-
tained earlier for this variable concerning one SAM system. 

In order to verify the adequacy of the battle simplest model Eqs (17)-(19) of an 
individual SAM system, let us find the relative value of the separate air defense battles 
mathematical expectation number at any time t of the battle. To this end, let us divide 
the left side of Eq. (19) into the left side of Eq. (20) and the right side of Eq. (19) by 
the right side of Eq. (20), then we get 
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−

∗ ∗
∞

   = − − ⋅     
 (21) 

After reducing the same variables, we will find: 
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 ( ) ( )2 1
fc

*
1 2

1
1 e et tn t λ µ λ µλ λ

α
= − −  (22) 

The relative value of the mathematical expectation n*(t) of the damaged SAM 
systems number at any time of the battle t is found taking into account the known 
properties of the mathematical expectation of random variables [8] 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d.S d.S
d.S 00 01 10 10

0

0 1
1

n t n t
n t n t P t P t P t P t

n
∗ = = = = ⋅ + + ⋅ =    (23) 

Thus, the relative value of the damaged SAM systems mathematical expectation 
number at any time is equal to the probability of the state P10 

 ( ) ( ) ( )2 1
10 1 2

1
1 e e

t t
n t P t

λ µ λ µλ λ
α

∗ = = − −  (24) 

Comparing Eqs (22) and (24), we can see that they are identical: 

 ( ) ( )fcn t n t∗ ∗=  (25) 

Using Eqs (2), (6) and (7) we can see that the expression for the relative value of 
the mathematical expectation Nsda

*(t) of the downed enemy planes number differs from 
the expression for nf c

*(t) by the probability of the enemy plane shot down and, at the 
same time, it coincides with Eq. (19) 

 ( ) ( ) ( ) ( ) ( )sda fc fcsda*
sda fc

sda sda fc fc

P n t n tN t
N t n t

N P n n
∗

∞ ∞ ∞
= = = =  (26) 

Based on Eqs (20)-(26), it can be stated that there is the presence of equality of 
relative values of the mathematical expectations number of fire contacts and losses of 
the sides  

 ( ) ( ) ( ) ( ) ( )sda fc 10n t N t n t P t w t∗ ∗ ∗= = = =  (27) 

in the analytical description Eqs (15)-(19) of the simplest air defense battle model. 
Thus, the obtained simplest model of an individual SAM subunit battle proves to 

be adequate to a real battle with the accuracy of accepted hypotheses 1-3 concerning 
the most essential features of air defense battle.  

3.5. Model of Fight off the Enemy Air Blow by AAM Grouping  

For a rough estimate of the expected results of an air defense battle of AAM force 
grouping that includes n0 single-channel on the target SAM systems, and that fights off 
an enemy blow with an intensity of I planes/minute, the grouping battle model can be 
replaced by a set of battle models Eqs (15)-(19) of single SAM systems, each of which 
fights off blows of intensity 

 
0

1 n
II =  (28) 

In this case, the overall result can be found using Eqs (27), (24) and (13). How-
ever, in this case, the number of shot and destroyed MAA is deliberately 
underestimated, since it excludes the effect of system performance increasing, which is 
associated with damping the unevenness of the airplanes input flow in a multi-channel 
AAM grouping. 
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Therefore, we have expanded the model shown in Fig. 4. Let us include the AAM 
grouping n0 single-channel SAM subunits and temporarily retain the assumption that 
any enemy aircraft can be shot upon by any SAMS. 

In this case, the indices of air defense battle possible states Sij can take on the 
values 0  ≤  i  ≤ n0, 0  ≤  j  ≤ n0, and the model’s graph will take the form shown in 
Fig. 5a. 

To obtain an analytical description suitable for practical calculations, we trans-
form the model (Fig. 5a) into the equivalent model of Fig. 5b.  

Let us find the probability P0 of damaging exactly i = 0 SAM systems as the sum 
of the model’s graph zero level probabilities in Fig. 5a, then we find the derivative of 
this probability Ṗ0 
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= ⋅∑ɺ ɺ  (29) 

For the product of two events (i = 0 and j), we take into account the probability 
multiplication theorem P0j= P0⋅P(  j|i = 0) and then we substitute it into the right side of 
the Kolmogorov-Chapman equation for the derivatives of the state probabilities S0j and 
after transformations we obtain the ability to move to an equivalent model Fig. 5b 
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where the conditional mathematical expectation of the occupied SAM systems number 
has the form 

 [ ] ( )
0

0

| 0 | 0
n

j

M j i j P j i
=

= = ⋅ =∑  (31) 

 

Fig. 5 Graph of the air defense battle’s model of a fully accessible grouping of a sin-
gle-channel by target SAM systems: a) the initial model; b) equivalent model 
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Arguing similarly, we find a system of differential equations that describe the ful-
ly accessible AAM grouping’s air defense battle with a flow of enemy single MAA 

 
0 0 01 1 0 11, ..., 1q q q q q n n nP P P q n P Pη η η− − −= − ⋅ + ⋅ = − = ⋅ɺ ɺ  (32) 

where 

 [ ]* |q P M j i qη µ= ⋅ ⋅ =  (33) 
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= = ⋅ =∑  (34) 

The solution of the equations system Eq. (32) under initial conditions P0 (0) = 1, 
Pq (0) = 0, q = 1, …, n0 and constant values of M [j|i] has the form 
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where functions Fqk have the form 
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With an insignificant “load” of the AAM grouping, determined by the condition 
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expression for M [j|i] takes the form 
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For conditions *[ / (1 )]t I Pµ> −  the value M [j|i] is practically independent of the 
battle time. Then ηq ≈ ηq−1 = η, q = 1, …, n0–1, and Eq. (35) takes the form  
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3.6. Verification of the Fight off the Enemy Air Blow by AAM Grouping Model 

The expressions for the mathematical expectations of the normalized losses for AAM 
grouping n*(t) and enemy MAA N*(t) in the model of fight off enemy MAA blow by 
AAM grouping (Fig. 5a) will take the form: 
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After differentiating Eqs (40) and (41), we obtain  
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The differential Eqs (42) and (43) must be integrated under the same initial con-
ditions  

 0)0(* =n                0)0(*
fc =n  (44) 

The normalized values of individual air defense battles’ mathematical expecta-
tions number coincide with the normalized values of the downed MAA mathematical 
expectations number (9). Therefore, to prove the validity of equality (10) in the model 
(Fig. 5a), it is sufficient to prove the equality of the mathematical expectations of the 
SAMS losses normalized values and the same number of battles. 

Let us assume that if there are n0 single-channel SAM systems in the AAM 
grouping, the differential equations for the mathematical expectations of the SAMS 
losses normalized values and the number of battles are identical 

 ( ) ( )* *
0 fc 0, ,n n t n n t=ɺ ɺ  (45) 

it means 
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and let us prove that in this case [Eqs (45), (46)] the identity of the differential equa-
tions for mathematical expectations of the SAMS normalized losses and the number of 
battles will remain even in the case of increasing the number of single-channel SAMS 
in AAM grouping by one, i.e. it will be true the equality 

 ),1(),1( 0fc0 tnntnn +=+ ∗∗
ɺɺ  (47) 

For the aim of brevity, we omit the notation of the state probabilities dependence 
on time. To prove the validity of Eq. (47), it suffices to prove the validity of the equiv-
alent equality 
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So, for n0 = 1 we use the system of Eq. (15) and for (46) we obtain 
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Comparing the right parts of the obtained equations, we are convinced of their 
identity. 
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When increasing n0 to n0 +1 in the graph of model of air defense battle (Fig. 5a), 
additional states Si,n0+1–i, i = 0, …, n0 +1 and additional connections of states with new 

states Si,n0–i, i = 0, …, n0 appear. 

So, for n0 = 2, from the equations for the states of the model’s graph Fig. 5a we 
find 

 

( )

( )

2 2
* * * *

01 02 11 11
0 0

1
* *

01 ;1 1
0

1 2 2

1 1

i

ij
i j

i i
i

i P t P P P P P P P P

P P P i P

µ µ µ µ

µ µ

−

= =

+ −
=

 = ⋅ + − + = 

= + + −

∑ ∑

∑

ɺ

 (51) 

 

( ) ( )

( )

2 2
* *

01 02 11
0 0

1
* *

01 ;1 1
0

1 2 1

1 1

i

ij
i j

i i
i

P jP P P P P

P P P i P

µ µ

µ µ

−

= =

+ −
=

 = ⋅ + ⋅ + ⋅ = 

= + + −

∑∑

∑
 (52) 

Comparing the right parts of the obtained equations, we are convinced of their 
identity and the possibility of an additive increment in the right part of Eqs (51) 
and (52). 

In general case, with an increase in the number of SAM systems in a grouping by 
one, the left and right parts of equality (48) take the form of Eqs (53) and (54), respec-
tively, with the same additional members 
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The identity of the differential equations for the mathematical expectations of the 
number of individual air defense battles and the normalized losses of SAM systems 
was found at n0 = 1, at n0 = 2, and was proved for general case of an increase in the 
number of SAM systems in a grouping by one unit Eqs (53), (54), which allows us to 
inductively claim the validity of the equality of mathematical expectations of the par-
ties normalized losses (10) for the model of fight off the MAA air enemy blow by the 
AAM grouping (Fig. 5a) and for its equivalent representation of Fig. 5b. 

Thus, in the model of AAM grouping’s combat operations, there is the law of 
equality for the relative values of the mathematical expectations of the party’s losses – 
equality (10) and at the same time, the main hypotheses (1-4) about the most essential 
properties of air defense battle are taken into account. 

Therefore, there is reason to believe that the model of fight off the enemy MAA 
air blow by the AAM grouping (Fig. 5a) and (Fig. 5b) is adequate to real air defense 
battle with the accuracy of hypotheses 1-4 about its most essential features. 

Note that for the case of AAM grouping of m channel SAM systems in the model 
of Fig. 5a, the defeat of one SAM system will be accompanied by a decrease in the 
number of states at the next lower level of the graph not by one state, but immediately 
by m states. In this case, the model (Fig. 5b) will not change and the presence of equal-
ity (10) in the air defense battle model (Fig. 5a) is preserved. 
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3.7 Verification of Battle Model Suitability for Practical Calculations 

We will check the suitability of the developed models for their intended use according 
to the information of a real air defense battle (Fig. 1, Tab. 1).  

The sequence of calculations for the simplest model of a separate SAM subunit 
air defense battles [model 1, Eqs (5), (6), (7), (13), (14), (18), (24), (28), Tab. 2 
No 1-21] allows us to assert the underestimated calculation results of the AAM group-
ing air defense battle by indicators of mathematical expectations of battles number, 
damaged SAM systems and downed enemy aircraft (Tab. 2, No 18-20), respectively, 
which is the reason for the lack of consideration the mutual assistance effect between 
SAM systems in AAM grouping during shooting enemy’s MAA.   

However, the indicator w(44) of the error magnitude in calculating of parties’ 
normalized losses (Tab. 2 No 17) relative to its value in a real battle (Tab. 1 No 36) 
was less than 3 % (Tab. 2 No 21), which allows to use expression (24) as a variant of 
the analytical representation of inner law of equality between the relative values of the 
mathematical expectations of parties losses 

 ( ) ( ) ( ) ( )2 1
10 1 2

1
1 e et tw t n t P t λ µ λ µλ λ

α
∗≈ = = − −  (55) 

where the elements of Eq. (55) are described in Eq. (18). 

Tab. 2 Data and calculation results using battle models 

Model 1 Eqs (5), (6), (7), (13), (14), (18), (24), (28) Model 2 Eqs (33), (38), (39), (40) 
No Argument Value No Argument Value No Argument Value No Argument Value 

1 Tstr [min] 44 8 µ [1/min] 1.022 15 λ1µ t −0.286 22 I [1/min] 0.5909 

2 n0 16 9 Nsda ∞ 20 16 λ2 µ t −46.30 23 M [j|i] 0.7066 

3 P* 0.1818 10 I1 [1/min] 0.0369 17 w ≈ P10 0.2447 24 η [1/min] 0.1313 

4 Psda 0.2273 11 ρ 0.0361 18 nfc (44) 21.537 25 e−η
  
t 0.00309

5 nfc∞ 88 12 α 1.0233 19 nd.S (44) 3.9159 26 Σ(q⋅Pq) 5.7721 

6 Nsda ∞ 20 13 λ1 −0.0063 20 Nsda (44) 4.8949 27 w ≈ [Σ  ( q⋅Pq)]/n0 0.3607 

7 Tavr [min] 0.9784 14 λ2 −1.0297 21 ∆ *) 2.68 % 28 ∆ **) −43.45 %

*) – 1 SAMS model       **) – n0 SAMS model 
 

The sequence of calculations according to the fight off the enemy air blow by 
AAM grouping model [model 2, Eqs (5), (6), (13), (14), (33), (38), (39), (40), Tab. 2 
No 22-28] allows us to assert the overestimated results of the AAM grouping air de-
fense battle calculations in terms of the sides normalized losses w (44) (Tab. 2 No 27) 
relative to its value in a real battle (Tab. 1 No 36) by more than 43 %. The discrepan-
cies are explained by the lack of consideration of the fifth and sixth hypotheses about 
the essential properties of AAM grouping’s air defense battle in model 2. 

So, the placement of SAM systems on the ground leads to the effect of incom-
plete accessibility of the AAM grouping’s SAM systems, when the next MAA is 
accessible for firing not to any SAM system, but only to some of them, through the 
fire zone of which the MAA trajectory passes. 

Under these conditions, the strength of the MAA in the group may exceed the 
number of SAM systems to which this group of MAA is accessible for firing. The 
noted effects can be taken into consideration when calculating the conditional mathe-
matical expectation Eq. (38), which will make it possible to more accurately take into 
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account the placement of SAM systems in battle formation, the separation of the MAA 
in height, as well as the possible composition of the MAA in groups.  

4 Results 

The use of special modeling technology elements [6] made it possible to identify the 
most essential properties and find inner low Eq. (10) of a real AAM grouping’s air 
defense battle. At the same time, the forecast error, using the revealed law, can be less 
than 0.6 % (Tab. 1 No 40), which allows using this law for the purposes of decision-
making practice. The use of this technology [6] also made it possible to select a math-
ematical apparatus that is statistically adequate to the battle processes and with the 
help of which it became possible to build a model of a single SAM system air defense 
battle and a model of fight off the MAA air blow by an AAM grouping. 

Both models describe the dynamics of the battle and have an explicit analytical 
description of the found inner law of air defense battle, which makes it possible to 
assert their adequacy to the real air defense battle with the accuracy of accepted hy-
potheses (1-3 and 1-4 respectively) about its most essential properties.  

As a result, there is reason to believe that the objectives of the research have been 
achieved. 

5 Conclusions 

A retrospective calculation of a real battle results (Fig. 1) according to the first model 
shows a high level of agreement between the calculated and real results of the battle 
(an error is less than 3 %), which also testifies in favor of its adequacy and the possi-
bility of being applied in practice.  

However, the models do not yet contain means of accounting for the deployment 
of SAM systems in the AAM grouping battle formation on real terrain, do not contain 
means of accounting for interference conditions, do not provide for taking into account 
the group strength and separation of the MAA in a blow at flight heights, as well as the 
capabilities of multi-channel SAM systems on the target. 

A similar retrospective assessment for the air defense battle model of the AAM 
grouping shows a significant (more than 42 %) overestimation of the predicted results 
due to the lack of consideration for the combat conditions noted above.  

However, the model is suitable for predicting the dynamics of air defense battle 
of a multi-channel SAM systems on the target in AAM grouping due to the fact that it 
contains the parameter M[j|i], which makes it possible to take into account the influ-
ence of the SAM systems placement in the AAM grouping battle formation, the group 
strength and separation of MAA at flight heights in a blow, which may be the content 
of the corresponding models. 

The analytical expressions of the developed models depend on a set of weapons 
characteristics and on the parameters of the parties’ actions tactics, which allows to 
use models for preliminary estimates of the AAM grouping combat missions effec-
tiveness indicators and for assessing the degree of influence of the weapons 
characteristics on the expected results of performing tasks. 

In addition, for more complete forecasts of the AAM grouping combat mission’s 
performance, initial data on the air enemy are needed – the expected total number of 
MAA, as well as the number, types and strength of MAA groups. These data depend 
on the effectiveness of aviation means’ defeating ground targets and can also be esti-
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mated by using the appropriate models. However, the description of these models’ 
research is beyond the scope of this consideration. 
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