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Abstract:  

This paper investigates the problem of cancellation of noise generated by own platform 
in shallow water scenario. In the case of underwater acoustics, the target signal detec-
tion and tracking in the presence of tow ship noise is a challenging task. 
A computationally intensive technique is necessary for tow ship noise suppression. In 
this paper, an algorithm using deep regression neural network (DRNN) along with min-
imum variance distortionless response (MVDR) beamformer is presented for tow ship 
noise cancellation. Nine DRNN’s each with different weight initialization techniques and 
activation functions are designed for effective tow ship noise cancellation. The designed 
DRNNs is tested using the simulated data and further validated using the real data col-
lected during the trials from Arabian Sea. 
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1 Introduction 
Estimating the direction-of-arrival (DOA) of propagating waves is an active research 
area with applications in a wide range of fields like medical imaging, seismology, 
acoustics, radar and sonar signal processing [1]. Localization of underwater targets is 
a challenging task owing to the complex nature of ocean medium. An array of sensors 
distributed in space which spatially and temporally samples the signal emanating from 
the source, is generally used for estimating the DOA.  

Lower frequency spectrum of acoustic signals propagates over long distances in 
ocean. For detecting quiet targets like stealthy submarines from far ranges, a long 
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array towed behind the warship is used [2]. The low frequency narrowband signals 
emitted by the potential targets are better captured by this towed array of sensors hav-
ing long aperture. Also, these arrays can be lowered to varying depths to take 
advantage of the ocean condition. Towed arrays are widely used for long-range sub-
marine detection, oil exploration, seismic studies and ocean bottom profiling and 
surveying [2, 3].  

Shallow ocean is a bounded medium, characterized by propagating modes with 
complex amplitude functions and modal values, making up a hostile environment for 
wave propagation [4, 5]. Anti-submarine warfare is shifting to the littoral shallow 
waters and hence protecting the harbor assets and constant coastal surveillance is cru-
cial in the emerging global scenario.  

A major practical difficulty faced in towed array processing is the intense self-
noise of the ship which is picked up by the sensors through direct and multi paths 
thereby masking the target signatures, despite being at a distance from the mother ship 
[2]. The tow ship noise is of high intensity and is present in a wide frequency band. In 
shallow ocean scenario, this problem is more severe due to multipath and bottom 
bounce reflections, affecting beams in many directions. This interference adversely 
affects the detection and tracking performance especially in the vicinity of the domi-
nant direction of the tow ship.  

In the past decades, a few methods have been developed to mitigate the effects of 
the own platform noise. Traditionally, adaptive spatial filtering techniques and sectoral 
null steered beamforming methods [6-9] are the two popular approaches employed for 
noise suppression of tow ship, which steers a null in the direction of the tow ship. 
However, this nulling reduces the interference only in a limited bearing interval. Sig-
nal- noise subspace separation-based methods by analyzing eigenvalues [10, 11], and 
principal component inverse (PCI) [12] based method is some of the common ap-
proaches employed for the illustrated purpose. Y. Song et al. [13] suggest a scheme 
based on Blind Source Separation. Another popular method is to use the principle of 
inverse beamforming [14], where the interference is subtracted from received signals 
at the hydrophone level. Later Li. et al. [15] proposed a combination of IBF and 
CLEAN algorithm, to improve the results of inverse beamforming, by removing side-
lobes. Jia et al. [16] presents a comparison of null steered beamformer and IBF. How-
ever, IBF based schemes falters at severe multipath environment. Sullivan et al. [17] 
use a model-based approach employing Extended Kalman Filter. Space time adaptive 
processing (STAP) algorithm, which samples the signal in both time and frequency 
was developed for effective self-noise cancellation [18, 19]. However, in all the above 
mentioned eigen decomposition-based schemes, the computational complexity limits 
its application is real-time scenario. Later a method exploiting the eigenvector analysis 
of spatio-temporal covariance matrix based on STAP was proposed for suppressing 
tow ship interference. However, the method requires prior knowledge about the inter-
ference characteristics and is computationally complex [20].  

Deep learning, a new area of machine learning research proposed by Hinton [21] 
in 2006, has drawn wide attention in the area of image processing and speech signal 
processing. Deep learning technique, due to its self-learning ability and high feature 
extraction capability, is used in speech signal separation [22-23], speech recognition 
[24], and speech denoising [25, 26]. However, in recent years, the deep learning tech-
nique has also been applied for DOA estimation [27-29]. The supervised learning 
approaches being data-driven, can be adapted to different acoustic conditions through 
training [28]. Following this, in this paper DRNN along with MVDR beamformer is 
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investigated for effective self-noise cancellation in the towed sensor array. To the best 
of our knowledge, deep learning-based algorithm is employed for the first time for 
tow-ship noise suppression application as per literature. Effective suppression of self-
noise signal helps in accurate target detection. The effectiveness of the DRNN based 
algorithm has been proven through extensive simulations over various conditions. The 
experimental results show that once trained properly, the DRNNs can be used in real-
time scenario for self-noise cancellation. The main contributions of this paper can be 
summarized as follows: 

 nine different DRNNs, each with different weight initialization techniques and 
activation functions were designed to extract features of the array data (using 
STFT) for effective tow ship noise cancellation. This does not necessitate any 
knowledge of signal subspace and noise subspace of the source signal,  

 generated large sets of training data, considering the array geometry and vari-
ous scenarios. The network learning parameters were decided iteratively and 
the performance of the networks was compared through extensive simulation in 
MATLAB 2019, over the simulated data,  

 validated efficacy of the scheme using data from field experiments. 
The outline of this paper is as follows. Section 2 presents the methodology used 

for tow ship noise cancellation. The array data modal used to simulate the signal, data 
generation for training and testing the neural network, the network model, and tow 
ship noise cancellation process using DRNN are explained in detail. The results and 
discussion based on the simulations and real data are given in section 3. Conclusions 
are presented in section 4. 

2 Methodology 

2.1 Array Data Model 

An array of sensors provides significantly enhanced location performance as compared 
to a single antenna array. The development of the array model is based on the follow-
ing assumptions:  

 the sources are assumed to be in the far field of the array,  
 the sources and sensors in the array are assumed to be in the same plane,  
 the sources are also assumed to be point emitters,  
 it is also assumed that sensors in the array can be modelled as linear time invar-

iant systems.  
The position of a source is defined by the azimuth angle, elevation angle, and 

range. To obtain a simplified array model, only one parameter is considered per 
source, i.e., the angle of arrival or DOA, which characterizes the source location.  

We model the ocean as a horizontally stratified water layer of constant depth 
overlying a horizontally stratified bottom [30]. This model implies that the ocean is 
range independent, i.e., variation of its acoustic properties in the horizontal direction is 
negligible in the range of interest. Fig. 1 shows the source-receiver geometry for 
a uniform linear array (ULA). 

Let x(t) denote the value of the signal as measured at some reference point, at 
time t. The reference point in this regard can be one of the sensors of the array or any 
point near it, so that the assumption of planar wave propagation holds. The physical 
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signals received by the array are continuous-time signals and hence ‘t’ is a continuous 
variable.  

 

Fig. 1 ULA sensor array geometry and source locations in the ocean 

Let τk denote the time needed for the wave to travel from reference point to sen-
sor k, (k = 1, 2, …, M). Then the output of sensor k can be written as:  

        k k k kt t t t   y h x e  (1) 

where hk(t) is the impulse response of the kth sensor, ‘⁎’ denotes convolution and ek(t) 
is the additive noise.  

The variation of DOA i.e., θ is not only through τk but also with Hk(ωc), where ωc 
is the angular frequency of the source signal. If the sensors are assumed to be identical 
and the first sensor is chosen as a reference point, then a(θ), the array steering vector 
for an M sensor array is given as:  

   c 1 c 1
Tj j1 e e M        a   (2) 

For multiple sources, a direct application of the principle of superposition leads 
to the following array model,  
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where y(t) is the output of sensor array, A is the array manifold matrix, s(t) is the sig-
nal vector corresponding to J narrowband sources, and e(t) is the additive white 
Gaussian noise (AWGN).  

The broadband signal is synthesized by composing uniformly spaced narrowband 
signals over the band of interest [31].  

2.2 Data Generation 

Large sets of data are simulated to train the regression neural network. Here we need 
predictor input and desired output to train our DRNN's. The dataset for training and 
validation is generated using the array data model mentioned in section 2.1. A ULA of 
40 sensors is assumed. For simulating the target of interest (TOI) signal the bearing is 
varied from [−90°:90°] with a resolution of 5°. The tow-ship signal is fixed at a bear-
ing of 20°. For each bearing, we considered the data collected from 40 sensors for one 
second. The data collected for one second has 12 800 samples. Hence to train the 
DRNN, we have 512 k samples of the data from 40 sensors. The datasets are generated 
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for various scenarios and bearings. The signal received by a towed sensor array con-
tains TOI, tow ship noise and ambient noise. The data is then converted to one 
dimensional (1D) data by arranging samples from each sensor, one below the other in 
linear fashion. We used the normalized concatenated data of the received signal as the 
predictor input. The normalized noise free TOI data with corresponding target bearing 
is considered as the desired output for the DRNN. For testing the neural network, the 
normalized data as received by the towed sensor array is fed to the DRNN. The simu-
lated acoustic signal is having a frequency bandwidth from 1 000 Hz to 4 000 Hz with 
the center frequency of 2 500 Hz. The network is trained further by varying the signal 
to interference plus noise ratio (SINR) value of the TOI. 

2.3 Brief Review of DRNN 

Deep Learning is a sub-field of machine learning. The emergence of deep learning 
technique has permeated the signal processing field due to its self-learning ability and 
high feature extraction capability. The ability of neural networks to learn features 
hierarchically helps the models perform well.  

A DRNN is a neural network with a certain level of complexity with more than 
two layers. DRNNs use sophisticated mathematical modelling to process data in com-
plex ways, and are more powerful than two-layer neural networks. However, the 
efficiency of the regression models depends on the weight and bias values chosen to 
match the predictor input and the desired output. There are different ways to initialize 
the weights of neural networks. Here the self-noise cancellation is carried out using 
fully connected neural networks with different weight initialization techniques and 
activation functions. Most of the regression models will not perfectly fit the data at 
hand. So, to meet the performance requirements, the only solution is to design more 
complex models to suit the problem. The right choice of weight initialization method 
and activation function can speed up time to convergence considerably. 

A basic DRNN structure has an input layer, multiple hidden layers, and an output 
layer. The number of features that the neural network uses to make its predictions is 
directly related to the number of input neurons. For a fully connected neural network, 
if the input image is of the size m × n, then m*n neurons are needed at its input layer. 
The output neurons are decided by the number of predictions that the neural network 
wants to make. The number of hidden layers is dependent on the problem and the 
architecture of the neural network. Generally, up to five hidden layers are used. The 
number of hidden layers in the network determines the performance efficiency. Using 
the same number of neurons in each hidden layer is adequate as a thumb rule. A per-
formance boost can be obtained by adding more layers rather than adding more 
neurons in each layer. If the number of layers chosen is very small, then the network 
will not be able to learn the underlying patterns in the data. A pragmatic approach is to 
start with a huge number of hidden layers and then to use a dropout layer [32]. 

2.4 Design, Training and Testing of DRNN  

In research presented in this paper we designed nine different DRNNs using a fully 
connected layer with different weight initialization techniques and activation func-
tions. Initially the network DRNN0 with zero weight initialization technique and tanh 
activation function with 5 hidden layers were designed. Each hidden layer contains 
a fully connected layer, an activation layer, and a batch normalization layer. Based on 
the observations, the networks were modified to improve their performance with more 
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hidden layers, different weight initializations and activation functions. Fig. 2 shows 
the basic structure of the designed DRNN architecture. 

In deep learning, the dataset plays a crucial role in training the neural network. 
For proper training and performance efficiency of the neural network, large samples of 
data are required. The dataset for training the neural network is prepared as mentioned 
in section 2.2. For validation, as part of training, sensor data is randomly simulated for 
different bearings. For testing the neural network, the signal is generated as received 
by a towed sensor array for different bearings and SINR values. In the testing phase, 
the input to the neural network is the array data vector as received by a towed sensor 
array. 

 

Fig. 2 The basic structure of the designed DRNN architecture 

For accurate estimation of TOIs and tow ship noise suppression, the neural net-
work should be trained with a large number of samples of signals. However, validation 
and testing of the trained neural network can be achieved using few samples as com-
pared with the training dataset. To minimize the complexity of the network the 
training signals are normalized to the same power. 

To train the neural network, the normalized predictor input signal and the desired 
output signal were transformed into spectrograms using the short time Fourier trans-
form (STFT) with Hanning window of 32 samples and an overlap interval of one 
sample. The magnitude and phase components were separately fed to the neural net-
work to estimate the magnitude and phase of the TOI. The designed DRNN tries to 
minimize the root mean square error (RMSE) between the desired output and the esti-
mated output.  

  21 ˆi iRMSE
N

  y y  (4) 

N indicates the number of neurons, yi the desired output and ˆiy the estimated out-
put. At all stages of the network, it is necessary to normalize the data to stabilize and 
speed up the network training process. Thus, the predictors are normalized before 
feeding to the network and each layer output is normalized using the batch normaliza-
tion layer. Training options are then set for proper training of the neural network. 
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To train the neural network, adaptive moment estimation (Adam) optimizer [33] 
is used. The sensor data is trained for 25 epochs with mini-batch of size 128 and initial 
learn rate set to 0.001. However, the learning rate is lowered after 5 epochs. To moni-
tor the network efficiency and accuracy during training, validation data and validation 
frequency are specified. The software trains the network using training data and calcu-
lates the accuracy of the validation data at regular intervals. For training the DRNN8 
with 12 800 samples of data corresponding to 40 sensors for bearings varying from 
[−90°:90°] in 5° steps, for a single SINR value, we require around 8 hours of time. The 
network was trained using MATLAB 2020b on an Intel i7 CPU based workstation. 

2.5 Processing Steps Leading to Self-Noise Cancellation 

 Dataset generation: Dataset for training the DRNN is prepared as described in 
section 2.2, 

 pre-processing stage: The simulated signal as received by the towed array is 
concatenated to normalized ID data and is transformed to spectrograms. Initial-
ly, a Hamming window function is applied to the signal and STFT is computed 
to generate the spectrogram of the signal. The phase and magnitude are separat-
ed and given to the DRNN for training and validation, 

 to model the target signal characteristics: Characteristics of the TOI (Phase and 
magnitude) is modelled as the noise free signal, 

 to train the neural network: DRNN is trained to estimate the magnitude and 
phase of the TOI from the received signal. The DRNN tries to minimize the 
RMSE between the desired output and estimated output, 

 to estimate the target signal characteristics from the neural network: Estimated 
characteristics (magnitude and phase) of TOI are multiplied together and an in-
verse STFT is applied to obtain the actual estimated TOI, 

 localization: The estimated target signal is subjected to beamforming for detec-
tion and bearing estimation of targets. Here MVDR beamformer is used as the 
response function. Fig. 3 shows the detailed block diagram of self-noise cancel-
lation using the proposed deep learning algorithm. 

 

Fig. 3 Block diagram of self-noise cancellation using the proposed deep  
learning-based algorithm 



186 DOI 10.3849/aimt.01522

This work shows how to use a deep learning network to separate target signal 
from tow ship noise. The TOI and self-noise signals are simulated and the two signals 
are combined to generate the signal, as received by a towed sensor array. Here we 
want to separate the TOI and self-noise.  

The signal received by a sensor array is converted to normalized 1D data. The 
signal is then transformed to the frequency domain using the STFT, with a window 
length of 32 samples, an overlap of 31, and a Hamming window. The predictor input 
consists of 12 consecutive STFT vectors with sequence overlap of 8. The network is 
trained to estimate the phase and magnitude of the TOI. The regression neural network 
tries to minimize the RMSE between the desired output and estimated output. 

During testing phase, the normalized 1D signal as received by the towed sensor 
array is transformed using STFT and is fed to the neural network. The DRNN will 
estimate the phase and magnitude of the TOI. The estimated phase and magnitude are 
multiplied and an inverse STFT is applied to obtain the actual estimated TOI. The 
signal is then subjected to MVDR beamforming for DOA estimation. 

3 Results and Discussion 

3.1 Using Simulated Data 

In this section, the simulation results of DRNN based on an algorithm along with 
MVDR beamformer are presented in detail. We simulated acoustic signal data as re-
ceived by a ULA of 40 sensors with an inter-sensor spacing of 0.175 m, which is half 
a wavelength corresponding to 4 kHz. The towed ship data is simulated at a bearing of 
20°. Along with this, ambient sea noise as per the Wenz curve [1] is also added. 
A realistic scenario is simulated by adding a TOI at various bearings from [−90°:90°] 
at a resolution of 5° to this case.  

Nine different DRNNs with different weight initialization and activation func-
tions using fully connected neural network were designed. Self-noise cancellation was 
tried out using these nine different DRNN. The spectrogram of the signal was taken 
and its magnitude and phase were separately trained in the DRNN. To train the de-
signed DRNN, the signals as received by the towed sensor array for one second 
(12 800 samples) from 40 sensors of different TOIs ([−90°:5°:90°]) were converted to 
1D normalized data, which is of size of 512 k  1. Hence in total we have 512 k × 37 
samples of data to train the network. In addition, the network was trained further by 
varying the SINR value of the TOI. To test the trained DRNN, normalized 1D signal 
of size 512 k  1 data was utilized. Thus, the network is trained to estimate the magni-
tude and phase of the TOI. The performance efficiency of the network is determined 
using RMSE value and error variation. Tab. 1 summarizes the performance of different 
DRNN for SINR 15 dB. It may be noted that the DRNN8 using random weight initial-
ization (Randn) and the PReLU activation function with 25 layers performs the best. 
Fig. 4 illustrates the designed DRNN8 network. 

Effective training of DRNN enhances the suppression of self-noise signals. Simu-
lation results obtained for DRNN8 with MVDR beamformer as response function are 
shown in Fig. 5. It is to be highlighted that the method is implementable in real time 
scenario owing to the lesser computational requirements, even though the training 
requires longer time and large samples. Fig. 5 illustrates the MVDR beamformer out-
put of the received signal with and without DRNN based self-noise cancellation 
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algorithm. TOI is at 60° while the tow ship is at around 20°. It may be observed that 
the tow ship noise is reduced considerably while the TOI power and hence the target 
detection remains unaffected. 

 

Fig. 4 DRNN8 using Randn weight initializer with 25 layers 

Tab. 1 Performance Efficiency of DRNNs 

DRNN Weight  
Initialization 

No. of 
Layers 

Activation 
function 

RMSE Error 
range 

DRNN0 Zero 18 tanh  44.60 −6:6 

DRNN1 Glorot 18 tanh  37.43 −5:5 

DRNN2 Glorot 18 ReLU  37.24 −4:4 

DRNN3 He 18 ReLU  33.70 −3:3 

DRNN4 He 18 ReLU  27.40 −3:3 

DRNN5 Randn 18 ReLU  22.70 −2:2 

DRNN6 Randn 18 ELU  17.80 −2:2 

DRNN7 Randn 18 PReLU  13.41 −1:1 

DRNN8 Randn 25 PReLU  10.47 −1:1 
 

 

Fig. 5 MVDR beamformer response function. (a) without self-noise cancellation  
(b) with self-noise cancellation using DRNN 

Though the training requires more samples and time, after proper training tow 
ship noise can be suppressed effectively using fewer samples within a few seconds. 
The designed DRNN system using random weight initializer works effectively for 
both positive and negative SINR values. Tab. 2 shows the RMSE value obtained for 
DRNN8 for different SINR values. 
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Tab. 2 RMSE value obtained using DRNN8 for different SINR values 

SINR [dB] RMSE 

−15 11.121

−5 10.780

 5 10.670

15 10.470

25 10.288

3.2 Experimental Validation 

We have also evaluated the scheme with the real field noise data collected during trials 
in the Arabian Sea, with a simulated target signal added to this recorded data. The data 
collected during the experimental trials of a passive towed array sonar system was 
used for validating the performance of the algorithm. The trial was conducted in the 
Arabian Sea, off Kochi, where the water depth is approx. 200 m. 

The data collected from an under-water acoustic sensor array goes through 
a chain of analog signal conditioning hardware. It is first received by low noise charge 
amplifiers, further it is passed through a pre-whitening filter and anti-aliasing filter. 
Using a 24-bit sigma delta ADC, the data is digitized and then it is packetized into 
Ethernet frames with proper header structures, MAC addresses and payload. The 
frame ends with a frame check sequence, which is a 32-bit cyclic redundancy check 
used to detect whether any error occurs during the time of transmission of the data. 
This data is stored in a digital data recorder and later retrieved to run the algorithms. 
The collected data is then converted to a number of samples-by-number of sensors 
S × M, the format where S is the number of samples and M is the number of sensors. 
Ethernet output is passed on to the DRNN and further to the beamformer module. 

The recorded data from the towed sensor array of 5 seconds duration is used to 
prove the efficacy of the proposed method. The sensor array supports multi-octave 
band reception, consisting of 96 non-uniformly spaced sensors to achieve uniform 
beam width across the bands of operation. There are four octave bands viz. band I up 
to 500 Hz, band II (500 Hz-1 kHz), band III (1-2 kHz) and band IV (2-4 kHz). The 32 
hydrophones in the central part of the array are positioned for band IV with an inter-
element spacing of 0.1875 m. Similarly, alternate elements in band IV and 8 elements 
each on both sides (spaced at 0.375 m) together form 32 elements of band III and so 
on. 

For analysis, the data from 32 hydrophones in the central part are taken. Hence 
for processing 64 K samples, the data from 32 sensors is used. Here the beam direction 
is from (0°:180°). A target signal is then synthetically simulated at a bearing of 110° 
and added to the real data. It may be noticed that tow ship noise is present at a bearing 
of 20° and a multipath reflected version of the signal is also seen at a bearing of 32°. 
The normalized 1D signal after STFT is fed to the trained DRNN to estimate the mag-
nitude and phase of the TOI. The estimated magnitude and phase are combined and an 
inverse STFT is performed to estimate the TOI signal. Fig. 6 shows the MVDR beam-
former response function with and without the DRNN based algorithm on the real 
experimental data. From Fig. 6, it is clear that the proposed DRNN based algorithm 
effectively suppresses the tow ship-noise signal and corresponding multipath signal, 
while the TOI detection is not hampered. 
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Fig. 6 MVDR response function of real experimental data for 5 second with multipath 
interference at bearing 32°. (a) without applying self-noise cancellation  

(b) after applying DRNN based algorithm 

To understand the efficiency of the designed DRNN, error analysis is carried out 
using both the RMSE value and mean absolute error (MAE) value. We obtained the 
RMSE value of 19.48 dB during testing the DRNN with the real experimental data. 
Subsequently, the MAE value between the estimated output and the predictor input is 
also calculated. Fig. 7 shows the histogram plot of the mean absolute error using 
DRNN8.  

 

Fig. 7 Histogram plot of the MAE value between the estimated and desired output 

The computational complexity, strengths and weaknesses of the proposed method 
are compared with the existing methods. Tab. 3 lists the comparison results. The pro-
posed deep learning-based algorithm is computationally more efficient and is suitable 
for real time application. Even though the training requires time, after the training 
phase, the network needs only minimum time irrespective of the size of the data, when 
deployed. Also, the trained network does not require any prior knowledge about the 
signal characteristics to achieve effective self-noise suppression. 
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Tab. 3 Performance comparison with existing methods 

Method Reference Performance Analysis 

Complexity Strength Weakness 

PCI [12] Low Effective in suppress-
ing single direction 
interference 

Cannot remove far 
field interference 
 
Requires prior 
knowledge about signal 
characteristics 

ECA [10, 11] Medium Simple decision crite-
rion 

Difficult to fix decision 
threshold 
 
Requires prior 
knowledge about the 
signal

Eigen 
vector 
analysis 
based on 
STAP 

[18-20] High Effective interference 
suppression 

Requires prior 
knowledge about the 
interference 
 
Difficult to fix decision 
threshold

Proposed 
Method 

 Medium (dur-
ing training) 
Low (during 
deployment) 

Effective interference 
suppression irrespec-
tive of the size of the 
data  
 
No need of selecting 
threshold values  
 
Suitable for real-time 
applications

Training requires more 
time  
 
Large data set is need-
ed for training 

4 Conclusion 
In this paper, we have presented the DRNN based technique along with MVDR beam-
former for tow ship noise cancellation. The proposed scheme helps in effective 
suppression of tow ship noise without necessitating any prior knowledge of signal 
subspace and noise subspace. Deep learning technique due to its self-learning ability 
and high feature extraction capability leads to an effective noise cancellation. Nine 
DRNNs, each with different weight initialization techniques and activation functions 
are designed and the performance of each network is evaluated for the effectiveness of 
self-noise cancellation. It is observed that the DRNN8 using random weight initializa-
tion (Randn) and the PReLU activation function with 25 layers performs the best. The 
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efficacy of the proposed scheme is demonstrated through extensive Monte-Carlo simu-
lations, exhibiting the mitigation of self-noise. The robustness of the method is further 
validated with the data collected from a field experiment conducted at the Arabian Sea 
off Kochi, India. The less computational demands of the network during testing makes 
it suitable for real time implementation, hugely aiding the long-range detection and 
classification of stealthy targets, in passive sonar. 

Acknowledgement 
The authors thank Shri S. Vijayan Pillai, Director, Naval Physical and Oceanographic 
Laboratory, DRDO, Ministry of Defence for the support and permission to publish the 
paper in the Journal ‘Advances in Military Technology’.  

References  

[1] URICK, R.J. Principles of Underwater Sound. 3rd ed. Newport Beach: Peninsula 
Publishing, 1983. ISBN 978-0-932146-62-7.  

[2] LEMON, S.J. Towed-Array History, 1917-2003. IEEE Journal of Oceanic Engi-
neering, 2004, 29(2), pp. 365-373. DOI 10.1109/JOE.2004.829791. 

[3] HINICH, M.J., D. MARANDINO and E.J. SULLIVAN. Bispectrum of Ship 
Radiated Noise. Journal of the Acoustical Society of America, 1989, 85(4), pp. 
1512-1517. DOI 10.1121/1.397352. 

[4] BREKHOVSKIKH, L.M. and Yu.P. LYSANOV. Fundamentals of Ocean Acous-
tics. New York: Springer, 2003. ISBN 978-0-387-21655-3. 

[5] KUPERMAN, W.A. and J.F. LYNCH. Shallow-Water Acoustics. Physics Today, 
2004, 57(10), pp. 55-61. DOI 10.1063/1.1825269. 

[6] VACCARO, R.J. The Past, Present and Future of Underwater Acoustic Signal 
Processing. IEEE Signal Processing Magazine, 1998, 15(4), pp. 21-51. DOI 
10.1109/79.689583. 

[7] LI, J. and P. STOICA. Robust Adaptive Beamforming. Hoboken: Wiley, 2005. 
ISBN 978-0-471-73346-6. 

[8] ROBERT, M.K. and S.P. BEERENS. Adaptive Beamforming Algorithms for 
Tow Ship Noise Cancelling. In: Conference Proceedings UDT Europe 2002. 
Swanley: Nexus Media, 2002.  

[9] VACCARO, R.J., A. CHHETRI and B.F. HARRISON. Matrix Filter Design for 
Passive SONAR Interference Suppression. Journal of the Acoustical Society of 
America, 2004, 115(6), pp. 3010-3020. DOI 10.1121/1.1736653. 

[10] KOGON, S.M. Robust Adaptive Beamforming for Passive Sonar Using Eigen-
vector/Beam Association and Excision. In: Sensor Array and Multichannel 
Signal Processing Workshop Proceedings. Rosslyn: IEEE, 2002, pp. 33-37. DOI 
10.1109/SAM.2002.1190994.  

[11] HARRISON, B.F. The Eigencomponent Association Method for Adaptive Inter-
ference Suppression. Journal of the Acoustical Society of America, 2004, 115(5), 
pp. 2122-2128. DOI 10.1121/1.1699395. 



192 DOI 10.3849/aimt.01522

[12] TUFTS, K.D. Adaptive Detection Using Low Rank Approximation to a Data 
Matrix. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1), 
pp. 55-67. DOI 10.1109/7.250406. 

[13] SONG, Y., W. FAN and L. XU. Tow-Ship Interference Suppression Based on 
Blind Source Separation for Passive Sonar. In: 3rd International Symposium on 
Parallel Architectures, Algorithms and Programming. Liaoning: IEEE, 2010, pp. 
426-430. DOI 10.1109/PAAP.2010.40. 

[14] ZHANG, B. Research on Directional Interference Cancelling. In: 3rd Internation-
al Symposium on Intelligent Information Technology and Security Informatics. 
Jian: IEEE, 2010, pp. 549-552. DOI 10.1109/IITSI.2010.96. 

[15] LI, Y., C. SUN, H. YU and L. WANG. A Technique of Suppressing Towed Ship 
Noise. In: IEEE International Conference on Signal Processing, Communications 
and Computing. Xi’an: IEEE, 2011, pp. 1-4. DOI 10.1109/ICSPCC.2011.6061631. 

[16] FENG, J., N. ZOU, Y. WANG and Y. HAO. Methods of Suppressing Tow Ship 
Noise with a Horizontal Linear Array. Journal of the Acoustical Society of Amer-
ica, 2018, 143(3), pp. 3010-3020. DOI 10.1121/1.5036438. 

[17] SULLIVAN, E.J. and J.V. CANDY. Cancelling Tow Ship Noise Using an Adap-
tive Model-Based Approach. In: Proceedings of the IEEE/OES Eighth Working 
Conference on Current Measurement Technology. Southampton: IEEE, 2005. 
DOI 10.1109/CCM.2005.1506325. 

[18] MIO, K., Y. CHOCHEYRAS and Y. DOISY. Space Time Adaptive Processing 
for Low Frequency Sonar. In: OCEANS 2000 MTS/IEEE Conference and Exhibi-
tion. Conference Proceedings. Providence: IEEE, 2000. DOI 
10.1109/OCEANS.2000.881786. 

[19] GUERCI, J.R., J.S. GOLDSTEIN and I.S. REED. Optimal and Adaptive Re-
duced-Rank STAP. IEEE Transactions on Aerospace and Electronic Systems, 
2000, 36(2), pp. 647-663. DOI 10.1109/7.845255. 

[20] REMADEVI, M., N. SURESHKUMAR, R. RAJESH. and T. SANTHANA-
KRISHNAN. Cancellation of Towing Ship Interference in Passive SONAR in 
a Shallow Ocean Environment. Defence Science Journal, 2022, 72(1), pp. 122-
132. DOI 10.14429/dsj.72.17370. 

[21] HINTON, G.E. and R. SALAKHUTDINOV. Reducing the Dimensionality of 
Data with Neural Networks. Science, 2006, 313(5786), pp. 504-507. DOI 
10.1126/science.1127647. 

[22] DELIANG, W. and J. CHEN. Supervised Speech Separation Based on Deep 
Learning: An Overview. IEEE/ACM Transactions on Audio, Speech, and Language 
Processing, 2018, 26(10), pp. 1702-1726. DOI 10.1109/TASLP.2018.2842159. 

[23] TU, Y., J. DU, Y. XU, L. DAI and C.-H. LEE. Speech Separation Based on Im-
proved Deep Neural Networks with Dual Outputs of Speech Features for Both 
Target and Interfering Speakers. In: 9th International Symposium on Chinese 
Spoken Language Processing (ISCSLP). Singapore: IEEE, 2014. DOI 
10.1109/ISCSLP.2014.6936615. 

[24] HINTON, G., L. DENG, D. YU; G.E. DAHL, A. MOHAMED, N. JA, 
A. SENIOR, V. VANHOUCKE, P. NGUYEN, T.N. SAINATH and 
B. KINGSBURY. Deep Neural Networks for Acoustic Modelling in Speech 



Advances in Military Technology, 2022, vol. 17, no. 2, pp. 179-193 193

Recognition: The Shared Views of Four Research Groups. IEEE Signal Pro-
cessing Magazine, 2012, 29(6), pp. 82-97. DOI 10.1109/MSP.2012.2205597. 

[25] WANG, D.L., U. KJEMS, M.S. PEDERSEN, J.B. BOLDT and T. LUNNER. 
Speech Intelligibility in Background Noise with Ideal Binary Time-Frequency 
Masking. Journal of the Acoustical Society of America, 2009, 125(4), pp. 2336-
2347. DOI 10.1121/1.3083233. 

[26] SALEEM, N., M. IRFAN, X. CHEN and M. ALI. Deep Neural Network Based 
Supervised Speech Enhancement in Speech Babble Noise. In: IEEE/ACIS 17th In-
ternational Conference on Computer and Information Science (ICIS). Singapore: 
IEEE, 2018. DOI 10.1109/ICIS.2018.8466542. 

[27] KASE, Y., T. NISHIMURA, T. OHGANE, Y. OGAWA, D. KITAYAMA and Y. 
KISHIYAMA. DOA Estimation of Two Targets with Deep Learning. In: 15th 
Workshop on Positioning, Navigation and Communications (WPNC). Bremen: 
IEEE, 2018. DOI 10.1109/WPNC.2018.8555814S. 

[28] CHAKRABARTY, S. and E.A.P. HABETS. Multi-Speaker DOA Estimation 
Using Deep Convolutional Networks Trained with Noise Signals. IEEE Journal 
of Selected Topics in Signal Processing, 2019, 13(1), pp. 8-21. DOI 
10.1109/JSTSP.2019.2901664. 

[29] LI, Q., X. ZHANG and H. LI. Online Direction of Arrival Estimation Based on 
Deep Learning. In: IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP). Calgary: IEEE, 2018. DOI 10.1109/ICASSP.2018.8461386. 

[30] PEKERIS, C.L. Theory of Propagation of Sound in a Half-Space of Variable 
Sound Velocity under Conditions of Formation of a Shadow Zone. Journal of the 
Acoustical Society of America, 1946, 18(2), pp. 295-315. DOI 10.1121/1.1916366. 

[31] NAIR, B.M., K.P. ARUNKUMAR and S.B. MENON. Broadband Passive Sonar 
Signal Simulation in Shallow Ocean. Defence Science Journal, 2011, 61(4), 
pp. 370-376. DOI 10.14429/dsj.61.89. 

[32] SRIVASTAVA, N., G. HINTON, A. KRIZHEVSKY, I. SUTSKEVER and R. 
SALAKHUTDINOV. Dropout: A Simple Way to Prevent Neural Networks from 
Overfitting. Journal of Machine Learning Research [online], 2014, 15(56), pp. 
1929-1958 [viewed 2022-01-21]. Available from: https://jmlr.org/papers/ 
volume15/srivastava14a/srivastava14a.pdf 

[33] KINGMA, D.P. and J.L. BA. Adam: A Method for Stochastic Optimization. In: 
3rd International Conference for Learning Representations. Ithaca: arXiv.org, 
2014. DOI 10.48550/arXiv.1412.6980. 


