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Abstract:  

This paper presents a hybrid positioning technique combining both loosely and tightly 

coupled Kalman Filter (KF) algorithms for an autonomous multi-wheeled combat vehi-

cle. The developed algorithm is able to provide accurate positioning information even if 

number of visible satellites falls below the minimum due to the harsh operation environ-

ments. Two modes of operation were considered which automatically switch between 

them according to the number of visible satellites in order to correct the INS drift. Fur-

thermore, a performance comparison between fifteen and eighteen KFs states is 

conducted. A simulation of the developed algorithm is performed, using a SATNAV navi-

gation toolbox and the collected data from real sensors mounted on a ground vehicle. 

The experimental results validated effectiveness of the developed algorithm. 
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1 Introduction 

In the last few years, the autonomous vehicles have become increasingly important 

assets in various civilian and military operations. Such vehicles have the capabilities to 

work and react to its environment autonomously [1-3]. Consequently, building auton-

omous combat vehicles has drawn dramatic attention while autonomous road vehicles 

are the boosting research topics [4, 5].  

The most widely used navigation sensors for autonomous vehicles are GPS and 

INS. Such sensors can be used individually or integrated [6-8]. In addition, using an 

Inertial Measurement Units (IMU) in autonomous vehicles, the acceleration, angular 

rotation, and attitude data are provided at high update rates. Accordingly, the velocity 

and position of the vehicle can be estimated easily. Furthermore, IMU sensors are not 
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affected by the vehicle’s tires slip that is encountered by most ground vehicle applica-

tions. On the other hand, GPS receiver is an absolute low-frequency sensor that 

provides the state information at low updated rates. Consequently, the integration of 

these two sensors will improve the position information for the autonomous vehicle 

during a maneuver. 

The combination of data from several sensors is known as sensors fusion. This 

combination, or integration, enhances the accuracy, which is not realizable when em-

ploying each sensor individually. The main purpose of applying data fusion is to 

eliminate the possibility of detectable errors and to obtain a higher rate of reliability by 

using data from several distributed sensors. On the other hand, Kalman Filter (KF) is 

the most popular approach in integrated navigation systems which considers a power-

ful mathematical tool for analyzing and solving localization estimation problems 

[9-13]. KF was originally introduced by Kalman [14], and has been extensively ap-

plied especially in navigation applications, which were implemented to fuse low-level 

data. Furthermore, Extended KF (EKF) is one of the most readily employed methods 

for fusing data in case of applications utilizing robots.  

An EKF has proved to be a promising approach to fuse INS and GPS [15], which 

obtains high accuracy and stable positioning solution with two-antenna GPS/INS inte-

gration in harsh environments using the conventional EKF GPS/INS integration. In 

addition, it provides monitoring the contribution of the filter dynamic model by adap-

tive modification of noise covariance. The accuracy of the introduced technique has 

been verified with a field vehicular test. [16], proposed a standalone attitude and head-

ing reference system (AHRS) methodology that employs the IMU and magnetometers 

data in an averaging manner. This method takes the rotations of the platform into ac-

count. The introduced AHRS has the capability to provide attitude updates through 

a refined loosely coupled filtering procedure. A GPS/IMU sensor fusion system using 

KF estimation methods using fuzzy subsets was discussed by Caron [17], for autono-

mous ground vehicles. Due to the possible loss of the GPS signal and as a result of the 

INS drift, the multi-sensor KF could be fed directly via the acceleration obtained 

from IMU. 

Lee [18] introduced a sensor fusion algorithm, which fuses the obtained data 

from both the monocular camera and GPS/IMU for autonomous system. Accordingly, 

it enhances the accuracy and robustness of the navigation system. Wang [19] intro-

duced an accurate GPS/IMU/dead reckoning system fusion algorithm for unmanned 

ground vehicles, which is based on autoregressive moving average models and occu-

pancy grid constraints. In addition, a GPS/IMU sensor fusion system using KF 

estimation methods using fuzzy subsets was discussed by Bostanci [20] for autono-

mous ground vehicles. Due to the possible loss of the GPS signal and as a result of the 

INS drift, the multi-sensor KF could be fed directly via the acceleration obtained from 

IMU. Tian [21] introduced a variational Bayesian Kalman Filter (VBKF) algorithm for 

INS/GPS integrated in order to overcome the performance degradation which comes 

from the outliers in the traditional filtering.  

In this paper, a hybrid framework for positioning technique based on the integra-

tion of GPS/INS for combat vehicles is developed. The proposed framework will solve 

the positioning accuracy problem when the number of visible satellites is less than 

four. The proposed algorithm has the capability to adapt itself to solving the position-

ing problem by switching between the loosely coupled and tightly coupled algorithms 

according to the number of visible satellites. Two KFs are developed; the first is to 

improve GPS information, and the second enhances the INS position, velocity, and the 
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attitude with the aid of GPS position and velocity. The advantage of the developed 

methodology is that it is based on low cost sensors and the proposed algorithm able to 

provide accurate and reliable navigation guidance. 

The paper is structured as follows. The methodology of the proposed hybrid posi-

tioning technique is presented in section 2. Section 3 introduces the construction of 

Kalman filter for the proposed hybrid technique. The numerical simulation and field 

test for the proposed hybrid positioning technique are presented in Section 4. The 

conclusion is given in Section 5. 

2 GPS/INS Hybrid Positioning Technique 

In this section, the methodology of the proposed hybrid positioning technique is de-

scribed. In order to achieve accurate and robust positioning estimation for the 

autonomous multi-wheeled combat vehicle, a hybrid positioning technique based on 

a KF method is proposed. The developed technique fuses the data from the low-cost 

GPS and INS sensors. In addition, it contains two modes of operation, which provide 

an accurate navigation solution during maneuvers by updating the mode according to 

the GPS signal and the availability of the satellites. 

If the GPS signal is available, and the number of visible satellites is sufficient, 

the developed framework will be operated in the first mode based on loosely coupled 

Kalman filter GPS/INS integration as shown in Fig. 1a. Consequently, the GPS and 

INS will operate independently to provide two independent navigation solutions. 

Therefore, to get the third navigation solution, the obtained data from the GPS and 

INS will be fed to Kalman filter (fused together). By taking the difference between the 

collected data and based on the error models, the INS errors can be estimated. Based 

on the estimated errors, the INS solution will be corrected and consequently provide 

the integrated navigation solution. The main feature of loosely coupled KF is that two 

separate KF of the GPS and the integration filter are used in cascaded integration. 

On the other hand, when GPS signal lacks credibility or the effective number of 

satellites less than four, the developed framework will switch to the second mode that 

is based on tightly coupled KF as shown in Fig. 1b. Both GPS and INS work as basic 

sensors providing their raw outputs of pseudorange and pseudorange rate measure-

ments. The difference between the pseudorange and pseudorange rate measurements 

from the GPS and the INS are processed directly in the navigation KF to estimate the 

INS errors. According to the estimated errors, the INS output can be corrected, and the 

integrated navigation solution can be obtained. By this way, aiding the INS with the 

raw GPS measurements is possible even if the number of visible satellites is below the 

minimum [22, 23]. Therefore, the use of the proposed hybrid algorithm has benefits 

for combat vehicle navigation system when the satellite signals are difficult to receive. 

3 Construction of Kalman Filtering Algorithm 

In this section, the construction of Kalman filter for the proposed hybrid technique is 

described.  

3.1 Enhance GPS Using Kalman Filter 

The purpose of KF is to improve and enhance the GPS data before fusing it with INS 

data. The continuous-time system state equation of KF can be expressed as 
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 ( ) ( ) ( ) ( ) ( )t t t t t= +X F X G Wɺ  (1) 

where 

F(t) is called the dynamic matrix, which propagates the errors over time, 

X(t) is the state vector,  

G(t) is the noise distribution matrix, 

W(t) is the random forcing functions. 

 

 

(a) 

 
(b) 

Fig. 1 Proposed hybrid positioning methodology. (a) The first mode loosely  

coupled KF; (b) The second mode tightly coupled KF 

Consequently, based on the discretizing method in [24], the discrete time linear 

system, can be expressed as follows: 

 , 1 1 1 1k k k k k k− − − −= +X φ X G W  (2) 
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where 

xk is the state vector, 

φk,k−1 is the state transition matrix, 

Gk−1 is the noise distribution matrix, 

Wk−1 is the process noise vector, k is the measurement epoch. 

Then, the state vector X will be defined as follows: 

 [ ]T

N E U VN VE VU Offset driftδ δ δ δ δ δ δ δ=X  (3) 

where 

[ ]N E Uδ δ δ  denote the north, east and up positions respectively, 

[ ]VN VE VUδ δ δ  denote the north, east and up velocities respectively, 

[ ]Offset driftδ δ  are the receiver clock offset and drift. 

The initial state vector prediction is presented in Eq. (4), and the initial prediction 

error covariance matrix in Eq. (5) 

 [ ]T

0 0 0 0 0 0ˆ 0 0 0 0=X  (4) 

 0

10 0

0 10

 
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 
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⋯

 (5) 

Considering Eq. (1), the dynamic matrix will be considered as shown in Eq. (6) 

and the overall system will be represented as follows: 
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 (7) 

The state transition matrix Eq. (8) represents the known dynamic behavior of the 

system, which relates the state vector from epoch k−1 to epoch k. 

 e t t∆ ≅ += ∆F I Fφ  (8) 

where I is the identity matrix, Δt is the sampling interval. 
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Consequently, the discrete-time of the power spectral density can be expressed as 

follows: 

 T T

0

d

t

k t

∆

= ∫Q φGQG φ  (9) 

where Q is the power spectral density: 

 
p

b

d

0 0

0 0

0 0

q

q

q

 
 =
 
  

Q  (10) 

qp is the spectral density value of position, 

qb is the spectral density value of clock bias, 

qd is the spectral density value of the clock drift. 

Then the discrete time linear measurement equation of the system is as follows: 

 k k k k+=Z H X ξ  (11) 

where  

Zk is the measurement vector of the sensor output, 

ξk is the white Gaussian observation noise for the sensor with zero mean with obtained 

covariance matrix T ,k k kξ ξ =  R E  

Hk is the measurement matrix associated with the sensor. 

From the model described in Eqs (2), (9), and (11), the KF can be computed as an 

update stage and a prediction stage [25] as follows. 

The update stage 

In this stage the KF gain Kk is computed to state estimate measurement update as fol-

lows: 

 1 1
ˆ ˆ ˆ

k k k k k k− − = + − X X K Z H X  (12) 

where the Kalman gain for the data associated to the sensor is expressed as 

 ( ) 1
T T

k k k k k k k

−
= +K P H H P H R  

and the corrected covariance matrix as follows: 

 [ ] 1k k k k −= −P I K H P  (13) 

The prediction stage 

In this stage, the estimated state ˆ
kX  is corrected whenever a measurement is received. 

The prediction stage is defined by Eqs (14) and (15): 

 , 1 1
ˆ ˆ

k k k k− −=X φ X  (14) 

 T
, 1 1 , 1 1k k k k k k k− − − −= +P φ P φ Q  (15) 
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3.2 GPS/INS Integration 

In this integration, both the GPS and INS are operated independently, which provides 

two separate navigation solutions. In order to improve the GPS solution, the position 

and velocity from GPS are fed to optimal estimator (Kalman filter). On the other hand, 

the INS solution is also supplied to the integration filter which takes the difference 

between the two solutions, then, based on the error models it estimates the INS errors. 

Subsequently, the INS solution is corrected according to the estimated errors in order 

to provide the integrated navigation solution in the form of position, velocity and atti-

tude. The distinguishing feature of this configuration is a separate filter for the GPS. 

This integration is an example of cascaded integration because the two filters (the GPS 

and the integration filters) are used in succession. It is also called a decentralized ap-

proach because there is a separate filter used for GPS. 

Considering the loosely coupled GPS/INS integration KF, the state vector con-

sists of fifteen states in terms of three position states (δφ δλ δh), three velocity states 

(δVE δVN δVU), three attitude states (δp δr δA) in east, north and up directions, three ac-

celerometer biases (δfx δfy δfz), and three gyro drifts respectively (δ�x δ�y δ�z), (the three 

states for GPS bias in the three directions will be considered later), as follows: 

 
T

h VE VN VU p r A               f f fx y z x y z
δ δ δ δ δ δ δ δ δ δ δ δ δ δ δϕ λ ω ω ω
 
  

=X  (16) 

where  

x y zf f fδ δ δ 
 

are three accelerometers constant biases in the body frame, while 

x y zω ω ωδ δ δ 
 

are three gyro constant drifts in the body frame. 

Position Error for Local Level Frame (LLF) 

The position error for Local Level Frame (LLF) in simple form can be obtained as fol-

lows: 

 1       l l
r r

−=δ D δɺ  

applying the orientation of LLF w.r.t earth, where D−1transforms the velocity vector 

from rectangular coordinates into curvilinear coordinates in the Earth-centered earth-

fixed (ECEF) frame. 

Consequently, the generalized form of the position error will be as follows:  

 ( )el
skewsymml l

r r
lωδ δ= −ɺ  (17) 

where el
lω represents the effect of the change of the orientation of local level frame w.r.t 

the earth and can be represented as follows: 
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where vn, ve, vu are the velocity components, RN is the normal radius of curvature for the 

east-west direction and RM is the meridian radius of curvature for the north-south direc-

tion. 

The Velocity Error for Local Level Frame  

The velocity error for Local Level Frame (LLF) can be obtained as follows: 

 ( )ie el2  
l l b l l l l

bV f V g= − + +R Ω Ωɺ  (19) 

where V is the velocity vector in local level frame, l
bR is the transformation matrix from 

the body-frame to the inertial-frame, fb is the specific force measured by the accelerome-

ters in the body-frame, ie
lΩ and el

lΩ are the skew-symmetric matrices corresponding to 

the rotation of the Earth about its spin axis and the change of orientation of the local-

level frame with respect to the Earth respectively. 

By taking into account the error δ in the measurements, then the velocity error for 

Local Level Frame (LLF) can be represented as follows: 

 ( ) ( ) ( ) ( )( )ie ie el el2l l b b l l l l l l l l
b v gV f f V gδ δ δ δ δ δ = − + +

 
+ ++ +R Ω Ω Ω Ωɺ   (20) 

From Eq. (20), the velocity error for local level frame can be obtained by apply-

ing algebraic manipulation to be as follows in Eq. (21). 

 ( ) ( )ie el ie el2 2l l l l b l l l l l l l
b v gV f Vδ ε δ δ δω δω δ= − + − + +++F R Ω Ωɺ   (21) 

where 

Flis the skew-symmetric matrix corresponding to the specific force,  

ie
lω  is angular velocity vector in the LLF obtained from the rotation of earth about its 

spin axes [ωe = 15 °/h], 

ie
lΩ  is the skew-symmetric matrix corresponding to l

ieω , 

el
lΩ is the skew-symmetric matrix corresponding to 

el
lω . 

The generalized form for each term of Eq. (21) can be obtained as follows. Ac-

cording to the first term (Fl εl ): 

 ( )
n

e

pu n

u

e

r

a

0

0

0

l l

f f

F f f

f f

δ
δ
δ
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

− 


 −
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=


 (22) 

where fe, fn, fu are the body acceleration in east, north and up directions. According to 

the second term ( )l b
f

b
δR : 

the accelerometer biases δ fb are transformed from the body frame to the LLF using 

the l
bR  matrix as follows: 

 ( )
11 12 13

bn 21 22 23

31 32 33

x

y

z

f

l b
fb

f

R R R

f DCM R R R

R R R

δ
δδ
δ
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   = =
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R  (23) 

According to the third term ( )ie ie v2  l l lδ 
 
− +Ω Ω :
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( )
vee e
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e vu
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Rearranging, 
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 (25) 

According to the fourth term ( )ie el
l l lw w vδ δ+ : 

this term can be neglected due to the multiplication of the velocities by the earth rotation 

rate or by (1/earth radius). 

According to the fifth term l
gδ : 

the term 
l
gδ  is the error in normal gravity due primarily to the error in the altitude 
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/
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2 /
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g r h

ϕ

λ

δ
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δ

−   
  −=
  +   

 (26) 

where g represents the normal component of gravity, r is the mean radius of the Earth 

and h is the height. 

The Attitude Error for Local Level Frame  

The attitude error for Local Level Frame (LLF) can be obtained as follows: 

 ( )1 ie el
l l l b l l l
b b b l b

= − + 
 

R R Ω R Ω Ω Rɺ  (27) 

Some terms will be neglected due to the division by earth radius, so the final 

equation will be as follows 
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where  
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skewsym sin 0
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Ω Ω

ɺ

 (29) 

The deterministic part of the sensor error (gyro drift and acceleration bias) is 

computed during the calibration and compensated in the measurements. Also, the non-

deterministic is commonly first order Gaussian Markov (GM) and the autoregressive 

(AR) process.  

In general form 2 2x xβ βδ ω= − +ɺ  

where, x is the random process, β is the reciprocal of correlation time, ω is the zero mean 

Gaussian noise with unit variance, δ2 is the variance of white noise. 
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Accelerometer bias error  
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where  

, ,
x y zf f fβ β β are the reciprocals of the correlation times associated with the autocorrela-

tion sequence of   ,,
x y zf f fδ δ δ ; 

2 2 2
, ,   

x y zf f fσ σ σ are the variances associated with the accelerometer errors; 

w(t) is white Gaussian noise. 

Gyro bias error 
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where  

 ,,
x y zω ω ωβ β β are the reciprocals of the correlation times associated with the autocorrela-

tion sequence of ,,
x y zω ω ωδ δ δ ; 

2 2 2
,  ,    

x y zω ω ωσ σ σ which are the variances associated with the gyroscope errors. 

Based on the above equations and from Eq. (1), the obtained state equation will 

be as Eq. (32), where F(t) is 15 × 15 matrix where  A11 to A55 are 3 × 3 matrices. 
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Also, the measurement equation according to Eq. (6) will be as follows: 

 ( ) [ ]
 

T

1 15 h VE VN VU p r A.  
x y z x y zf f ft ϕ λ ω ω ωδ δ δ δ δ δ δ δ δ δ δ δ δ δ δ = … +

 
Z H H ξ  (33) 

where H1…H15 is the measurement matrix associated with the sensor, then the meas-

urement vector can be determined as follows: 
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 (34) 

Now, considering the three states for GPS bias in the three directions which will 

be added to the vector states to form eighteen states instead of fifteen in terms of three 

positions, three velocities, three attitudes in east, north and up directions, three accel-

erometer biases, three gyro drifts, and three GPS biases in position states as follows: 

 

T

h ve vn vu p r A GPS GP S GPS                
x y z x y z x y zf f fϕ λ ω ω ωδ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ =

 
X  (35) 

From the above state vector Eq. (35), the dynamic matrix can be obtained by fol-

lowing the same above procedure from Eqs (17)-(32), and consequently the dynamic 

matrix will be 18 × 18 matrix including the GPS biases. The dynamic matrix will be 

18 × 18 matrix, where A11 to A66 are 3 × 3 matrices. 
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4 Tests and Results 

In this section, numerical simulation and field test for the proposed hybrid positioning 

technique are presented. The performance evaluation in the field test was conducted 

using a ground vehicle. The vehicle was equipped with a 48 all-in-view tracking 

Channels BU-353-S4 Waterproof SiRFIV GPS receiver with 1 Hz update rate. In addi-

tion, the vehicle was equipped with attitude and heading reference system UM6 ultra-

miniature orientation sensor that uses rate gyros, accelerometers, and magnetic sensors 

to compute sensor orientation 500 times per second. 

4.1 Simulation Test 

The simulation test is carried out using MATLAB Satellite Navigation toolbox 

(SatNav). The SatNav was designed for the navigation purpose. The SatNav toolbox 

simulates satellites and receivers in addition to the standalone positioning algorithms. 

Also, a real data processing via Receiver Independent Exchange Format version 2 

(RINEX2) data file supports the capabilities of the SatNav. 

The SatNav toolbox is used to simulate the obtained raw data from GPS that will 

be used to design KF. Consequently, in order to evaluate the GPS using SatNav, the 

trajectory that the vehicle will follow should be taken into consideration. Therefore, 

the trajectory of the obtained navigation solution is shown in Fig. 2a, which shows the 

division from the true route. Additionally, Fig. 2b shows the estimated path after add-

ing the designed KF to the GPS, where the obtained result is almost identical. 

 

(a) 
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(b) 

Fig. 2 The true and GPS trajectories without KF, (a) the total difference for GPS with 

and without KF, (b) The true and GPS trajectories with KF 

The average error in position without KF is around 100 m that cause the large di-

vision from the true path as shown in Fig. 3a. The error in velocity is shown in Fig. 3b, 

where the average error in the velocity is around 5 m/s.  

                                  
                                                                            (a) 

 
                     (b) 

Fig. 3 a) GPS error in position [m], b) GPS error in velocity [m/s] 
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However, the average error in position for GPS with KF is around 1.5 m as 

shown in Fig. 4a. The average error in the velocity is around 0.8 m/s as shown in 

Fig. 4b. 

 
(a) 

 
(b) 

Fig. 4 a) GPS with KF error in position [m], b) GPS with KF error in velocity [m/s]  

From the above results it can concluded that the proposed KF for the GPS pro-

vides more accurate positioning solution. 

4.2 Field Tests 

To validate the proposed hybrid positioning framework for GPS/INS integration, 

a field test was carried out along a pre-described route as shown in Fig. 5a. When the 

signal of the GPS is available, and the number of the satellite is sufficient, i.e. more 

than four, the GPS/INS sensor fusion can provide an accurate navigation solution on 

the first mode. On the other hand, if the number of the available satellites is less than 

four, the proposed algorithm will switch to the second mode and aiding the INS with 

GPS raw data will be still possible. The data obtained from the sensors are recorded 

and applied to the proposed hybrid positioning algorithm to be evaluated. 
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The obtained results from the field tests are shown in Fig. 5b. The proposed algo-

rithm is validated through two scenarios. The first scenario shows the obtained 

navigation solution for the field test of the GPS/INS integration in case of the number 

of satellites is sufficient for the navigation. The second scenario shows the obtained 

navigation solution of the GPS/INS integration in case of the insufficient number of 

satellites. 

 
(a) 

 
(b) 

Fig. 5 The proposed route for the field test 

The experimental setup for the integrated navigation system is shown in Fig. 6. 

The system consists of a GPS receiver BU-353-S4, UM6 orientation sensor, power 

supply, and PC was used as navigation computer. This system allows running the nav-

igation algorithms and logging the navigation sensor data for an offline processing. 

a) First Scenario  

In this scenario, outdoor experiments were performed to evaluate the navigation sys-

tem performance in case of a sufficient number of satellites (more than 4 satellites). In 

addition, the obtained outputs resulting from the developed fifteen and eighteen states 

KF will be compared. 
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Fig. 6 Experimental integrated navigation system. 

KF with 15 states 

The results obtained by using fifteen KF states are analyzed in terms of the horizontal 

position error as shown in Fig. 7. The average value of the error is around 2 m within 

14 min. The error in position is shown in Fig. 8, where the error for aided latitude and 

longitude is almost zero compared with the unaided case. The overall accumulation 

error in horizontal position is shown in Fig. 9, where the error reaches 400 m within 

14 min.  

 

Fig. 7 Horizontal position error for fifteen state KF 

Furthermore, the covariance analysis of the position RMS is shown in Fig. 10, 

which shows that the RMS error for x and y position decreased and became around 

1 m. Consequently, Fig. 11 shows the velocity covariance in x and y decreased to 

around 0.1 m/s. 

The obtained results of the velocity errors in the north, east and up frame are 

shown in Fig. 12. They show the difference between the aided and unaided INS out-

puts. Consequently, it can be noticed that the velocity error was accumulated for the 

unaided INS scenario. The errors in the attitude angles for both aided and unaided are 

shown in Fig. 13, where all are zeros. 
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Fig. 8 Lat, Long error aided and unaided KF 

 

Fig. 9 Horizontal position error 

 
Fig. 10 Covariance analysis of the position RMS error 
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Fig. 11 Covariance analysis of the velocity 

 

Fig. 12 The velocity error in fifteen state KF 

 

Fig. 13 Attitude angles error 
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KF with 18 states 

The performance evaluation in terms of the horizontal position error for eighteen and 

fifteen KF states is analyzed as shown in Fig. 14. The obtained results clarify that the 

average value of the horizontal error using the eighteen KF is around 0.9 m within 

14 min which provides better accuracy compared with the fifteen KF that provides 

average error around 1.8 m within 14 min. Consequently, the velocity errors in north, 

east and up frame are shown in Fig. 15, which is showing the difference between the 

aided and unaided INS. Notice that the velocity error is accumulated in case of unaid-

ed data. Also, the error in position is shown in Fig. 16. Consequently, it can be noticed 

that the error using the aided latitude and longitude are almost zero compared with the 

error in case of unaided latitude and longitude. 

 

Fig. 14 Horizontal position error for fifteen and eighteen KF states 

 

Fig. 15 The velocity error in eighteen KF states 
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Fig. 16 Lat, Long error aided and unaided KF 

Based on the obtained results, the navigation solution of the proposed eighteen 

states algorithm provides better accuracy than the fifteen KF states in terms of the 

RMS and maximum values of the position error. Therefore, the eighteen states algo-

rithm will be used to perform as a second mode if the visible number of satellites is 

less than four. 

b) Second Scenario  

In this scenario,  field experiments were performed to evaluate the navigation system 

performance in case of an insufficient number of satellites. In this scenario, the simu-

lated number of the available satellites that received by the GPS receiver will be 

decreased with time, and the number of satellites degradation over time is shown in 

Fig. 17. Consequently, it can be noticed that the GPS started to receive the data from 

eight satellites, i.e. the number of satellites is sufficient in the first step. Subsequently, 

after five minutes the number of satellites decreased to four satellites, then after six 

minutes it was three satellites for six minutes. Accordingly, the estimated error in 

horizontal position is shown in Fig. 18, which shows the effect of satellites degrada-

tion on the horizontal error, where the average value of the error is around 2 m within 

14 min. It reflects an accurate performance with satellites degradation. The velocity 

errors in north, east and up frame are shown in Fig. 19, which shows the difference 

between the aided and unaided INS. Thus, the velocity error is accumulated in case of 

unaided INS. In addition, the errors in the attitude angles for both aided and aided are 

shown in Fig. 20, where all errors converge to zeros.  
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Fig. 17 GPS satellites degradation over the time 

 

Fig. 18 Horizontal position error for KF state 
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Fig. 19 Velocity error 

 

Fig. 20 Attitude angles error 

 

Fig. 21 Covariance analysis of the velocity RMS error 
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Furthermore, Fig. 21 shows the velocity covariance analysis, in which x and y 

decreased to be around 0.05 m/s. Consequently, the covariance analysis of the RMS 

position is shown in Fig. 22, which shows that RMS for x and y positions decreased to 

around 1.5 m. 

 

Fig. 22 Covariance analysis of the position RMS error 

The error in position is illustrated in Fig. 23, which shows that the errors in aided 

lateral and longitudinal positions are almost zero compared with the unaided one. This 

scenario clearly shows that the proposed method can provide more accurate position-

ing solution, even if the number of satellites falls below the minimum. 

 
Fig. 23 Lat, Long error aided and unaided KF  

5 Conclusion 

In the research described in this paper, a hybrid framework for positioning technique 

based on the integration of GPS/INS has been successfully developed to achieve 

a robust positioning performance for autonomous combat vehicles. The proposed algo-

rithm has the capability to adapt itself to solving the problem when the number of 

visible satellites is less than four by switching between the introduced two modes. In 

addition, the proposed algorithm is able to fuse the obtained data from low-cost sen-

sors such as the GPS and the INS. For this purpose, two Kalman filters have been 

developed; the first one to improve the GPS information, and the second one to en-
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hance the INS position, velocity and attitude with the aid of GPS position and velocity. 

In addition, the introduced algorithm has the capability to enhance the navigation solu-

tion obtained from the low-cost sensors compared with the tactical grade sensors. 

Based on the covariance analysis of the RMS position using fifteen KF states, RMS 

error for x and y positions decreased and became around 1 m, while the velocity co-

variance in x and y decreased to around 0.1 m/s. Moreover, from the velocity errors in 

the north, east and up frame it can be noticed that the velocity error was accumulated 

for the unaided INS case. In addition, the errors in the attitude angles for both aided 

and unaided positions are all zeros. However, the average value of the horizontal error 

using the eighteen KFs is around 0.9 m within 14 min which provides better accuracy 

compared with the fifteen KFs which provides an average error around 1.8 m within 

14 min. The errors in both aided latitude and longitude cases are almost zero compared 

with the unaided one. In addition, the execution time using the loosely coupled inte-

gration is lower than the execution time of the tightly coupled integration. 

Accordingly, this work was developed in order to obtain this benefit by using loosely 

coupled integration combined with the tightly coupled integration and to reduce the 

execution time of the navigation solution. A simulation and field tests were conducted 

to evaluate the performance of the developed hybrid algorithm. The simulation was 

performed using a SATNAV navigation toolbox in MATLAB. The field test was car-

ried out by collecting the navigation data from the sensors mounted on the ground 

vehicle. The simulation and experimental results show that the proposed framework 

has the capability to improve the positioning accuracy by switching between the two 

modes, even if the available number of visible satellites falls below the minimum. 

Furthermore, in the future work the developed algorithm will be implemented on Cor-

tex m4 Board for real time testing and investigation. 
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