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Abstract: 

Aerial and satellite multispectral images are important source of intelligence infor-

mation. However, the object classification accuracy in those images for reasons such as 

camouflage, use of decoys, and others often turns out to be insufficient. The objective of 

the study is to develop a method for computer-aided analysis of aerial and satellite mul-

tispectral images, which allows improving classification accuracy. This objective is 

achieved by incorporating geospatial information (topographic, geodetic, about land 

cover types) into the classification process. As a mathematical basis of the method is 

used subjective logic of A. Jøsang. The effectiveness of the proposed method has been 

demonstrated by computer modeling using ArcGIS ModelBuilder tools. 
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1 Introduction 

It is well known that one of the richest sources of data on the terrain, landscape, opera-
tional environment, natural and man-made objects are aerial and satellite images [1]. 
The acquisition of such images and their analysis are the tasks of Imagery Intelligence 
activity [2]. Aerial and satellite images along with geospatial (topographic, structural 
morphological, geodetic, and other) data are widely used in Geospatial 
Intelligence [3, 4]. 

It should be noted that modern onboard cameras make it possible to form so-
called digital multispectral images, consisting of a set of images, each of which dis-
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plays surveyed territory in the separate enough narrow spectral zone of the optical 
radiation (visible or infrared) [5, 6]. 

Analysis of the digital multispectral images is a cognitive process and it is per-
formed by an operator-interpreter (O-I) [7]. Unfortunately, the cognitive process, due 
to its inherent complexity, is not straightforward and is accompanied by many difficul-
ties [8]. To facilitate the work of the O-I, various expert and recommendation systems 
are developed [9-11]. The use of such systems allows to free the O-I from a significant 
part of the routine work, but all the work related to the semantic analysis (understand-
ing) of the ground scene, including the classification of objects and the decision-
making, nevertheless, are performed by the O-I. 

In recent years, the difficulties of imagery interpretation are aggravated by the 
fact that an enemy uses camouflage and false targets more and more. In addition, the 
dynamics of military operations are increasing and the number of objects with a short 
lifetime is growing. Overall, these factors introduce additional uncertainty into the 
process of working with images and, therefore, the detection reliability and the classi-
fication accuracy of the objects are reduced. Experts see a way out of this situation in 
search of new paradigms for modeling and reducing uncertainty, developing effective 
methods of statistical and semantic fusion of data and information supplying different 
sources [12].  

This study aims to develop a method to improve the accuracy of object classifica-
tion in aerial and satellite multispectral images. Conceptually, taking also into account 
[12], the authors of the given paper go to the objective via reducing the degree of un-
certainty inherent in the process of classifying objects by using contextual information. 
It should be noted that the concept of “context” includes a collection of relevant condi-
tions such as space, time, environment, and surrounding influences that make 
a situation unique [13]. As stated in [14], “Context may provide information about the 
conditions of data and information acquisition, and it may constrain and influence the 
reasoning about objects and situations of interest.” 

In [15], a method is proposed in which contextual information is used to deter-
mine the operating modes of sensors that provide the most reliable and reactive 
decisions when targets are detected. The method is based on the provisions of the 
fuzzy set theory. 

A supervised algorithm for image classification, which combines local and mul-
tiscale contextual information with rejection option, improving the classification 
performance, is described in [16]. As a probabilistic model for classification, a multi-
nomial logistic regression is adopted. 

In [17, 18], the attention was drawn to the fact that in cases where the objects of 
classification are located in the natural environment, it becomes possible to improve 
the classification performance by taking into account the properties of this environ-
ment. This phenomenon was demonstrated in [17], where the intellectualization of the 
classification process due to expert knowledge of the terrain made it possible to signif-
icantly improve the classification accuracy of such complex classes of objects, as 
different types of forest, agricultural areas, and pasturelands. In [18], it was shown 
how one can improve the accuracy of classification of remotely sensed imagery data 
by incorporating contextual elevation knowledge into the classification process. In 
[17] and [18], the apparatus of a Dempster-Schafer theory of evidence (DSTE) [19] 
was used as a mathematical platform. 

A weakness of the studies marked above is that they do not fully take into ac-
count the specificity of image analysis in Geospatial Intelligence, which involves the 
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prompt processing of large arrays of images under conditions of significant uncertain-
ty and rigidly specified requirements for classification accuracy. Therefore, a new 
method for computer-aided analysis of aerial and satellite multispectral images using 
geospatial information is proposed, in the development of which the authors have tried 
to take into account the capacity of the modern geoinformation technologies. 

Based on the fact that the accuracy of the final decision on the class of the object 
depends on the uncertainty degree of hypotheses, a quantitative criterion for uncertain-
ty is introduced and a special procedure is proposed for reducing the uncertainty 
degree by sequentially incorporating geospatial context into the classification process.  

A distinctive feature of the developed method is also the use of a special proce-
dure of mitigation of the cognitive bias and errors of the O-I, which usually occur 
during the visual analysis of the digital multispectral image and the classification of 
the selected objects. 

To assess the effectiveness of the proposed method, a computer modeling was 
carried out using ArcGIS ModelBuilder tools [20]. 

The rest of the paper is organized as follows. The methodological approach 
adopted in the study is described in Section 2. The basic concepts of subjective logic 
(SL) are presented in Section 3. Section 4 provides the description of the developed 
method as a main result of the study. Materials related to modeling the proposed 
method are presented in Section 5. Section 6 is dedicated to the discussion. Finally, 
Section 7 consists of the conclusion and directions for further work. 

2 Methodological Approach 

Automation of image analysis assumes a certain distribution of functions between the 
O-I and the computer. We will proceed from the fact that human capabilities for de-
tecting and classifying aerial or satellite images exceed the capabilities of today’s 
digital algorithmic methods [17, 18]. At the same time, a human’s ability to make 
decisions in the presence of a large number of different factors is very limited. Based 
on these realities, it seems reasonable that the primary image analysis, including the 
detection of objects of interest and their classification, should be performed by the O-I, 
and then digital methods of data analysis and decision-making can be used to refine 
the results of cognitive classification. 

Analyzing the image, the O-I puts forward different hypotheses about the possi-
ble classes of the objects under consideration. Attracting logic inference methods 
(induction, deduction, abduction et al), he/she estimates these hypotheses and consid-
ers the arguments pro and contra for each of them. The accuracy of their estimates is 
determined by two key factors. 

The first factor is image quality. Quality of the images forming by the sensor is 
determined by its tactical and technical parameters, as well as the shooting conditions. 
The tactical and technical parameters of the sensor are relatively stable, but image 
quality can be significantly affected by changes in the transparency of the atmosphere, 
side flares, intrinsic noise of photodetectors, etc. These variations are stochastic and 
introduce so-called aleatory uncertainty into the process [21]. Reducing the level of 
aleatory uncertainty is possible, but for this, it is necessary to know the distribution 
functions of influencing parameters. 

Another factor is the finiteness of knowledge inherent in any human. The lack of 
knowledge spawns so-called epistemic uncertainty [21, 22]. It has been experimentally 
proven [23, 24] that even the highly skilled interpreter working under uncertainties is 
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prone to cognitive bias. Cognitive errors are committed by humans unconsciously and 
are manifested in a distorted perception of some image elements, unjustified regres-
sion shifts in estimates, unreasonable equalization of probabilities, etc. 

The existing uncertainties, of course, negatively affect quality of the classifica-
tion, and hence, the core idea of our methodological approach is that it is possible to 
improve the accuracy of the classification by reducing their level. There are two prom-
ising ways to reduce the impact of uncertainty factor on the results of object 
classification in aerial and satellite multispectral imagery. 

Firstly, it is the attraction of geospatial contextual information. Here we proceed 
from the following considerations. The fact is that each class of military objects has 
the corresponding restrictions according to the conditions of the operation and the 
combat use, and these restrictions are determined by the tactical and technical specifi-
cations of objects of the concrete class. A significant part of the restrictions is related 
to the terrain, its characteristics, and state. Therefore, after analyzing the information 
about the given area, it is possible to establish the degree of “friendliness” (acceptable) 
of this area for objects of the certain class. The resulting assessment of the “friendli-
ness” degree can be used to form a supplementary argument in favor of this or that 
decision regarding the class belonging of the object under consideration. In general, in 
order to reduce the uncertainty of the classification process, such elements of geospa-
tial context as vegetation, physical relief of the terrain, swampiness, road network, and 
so on can be considered.  

Secondly, if we understand the nature and possible consequences of the opera-
tor’s cognitive bias, then we can envisage the possibility of their algorithmic 
correction (mitigation). In particular, one of the typical cognitive errors is that under 
conditions of a lack of information, the O-I assigns the same probability to all possible 
alternatives, i.e. they solve the classification problem by unreasonably equalizing the 
probabilities. 

Finally, let us dwell on one more important issue. The implementation of a quan-
titative methodological approach requires a mathematical platform. The results 
obtained in [17, 18] indicate that the mathematical tool of DSTE can be used to classi-
fy objects under uncertainty.  

However, as L. Zadeh demonstrated [25], the use of the DSTE methods in cases 
of conflicting hypotheses can lead to incorrect results. Also, it’s worth noting that the 
use of the DSTE methods is connected with a significant computational burden. 

For these reasons, authors of the given study propose to solve the problem of im-
proving the accuracy of object classification in aerial and satellite multispectral 
images, relying on SL of A. Jøsang [26]. One of the advantages of the SL theory is 
that the description of any hypothesis in SL includes a quantitative assessment of the 
degree of its uncertainty [27]. Another important advantage is the simplicity of com-
bining hypotheses, including the conflicting ones. 

So, let us consider the basic provisions of SL. 

3 Basics of Subjective Logic 

SL is rooted into DSTE, so the terminology of both theories overlaps a lot. The subject 
of consideration in DSTE and SL is a system with a finite number of states (or classes) 
K. The states of the system are no longer decomposed, so they are called atomic ones. 
The states are mutually exclusive and exhaustive, i.e. at any time the system can be in 
only one of K states. 
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Every state of the system is presented by the corresponding hypothesis, so there 
will be K atomic hypotheses, so-called singletons. Together, these hypotheses-
singletons form a set named A Frame of Discernment (FoD). The FoD set is usually 
marked by θ letter: 
 { }1, , , ,k KH H Hθ = … …  (1) 

By combining the elements of FoD it is possible to build other, more numerous 
sets, which will contain all the singletons about the possible states of the system, all 
their possible combinations in the form of disjunctions of two, three terms, etc., as 
well as the θ set itself.  

Full set constructed in this way is called A Power Set and is denoted as 2θ: 

 { }1 1 2 1 3 1 2 32 , , , , , , , , , , ,k KH H H H H H H H H H
θ θ= ∅ ∪ ∪ ∪ ∪… … … …  (2) 

where a ∅ symbol denotes an empty set. Thus, a power set consists of 2K elements. 
Elements of the 2θ set, which through the disjunction unite two or more single-

tons, are called compound hypotheses. Every element X of the 2θ set is associated with 
the number mθ(X) complying the following conditions: 
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where mθ(X) number is called a belief mass of the X element. Elements of the 2θ set 
with zero belief mass are called focal ones. Note that for singletons of the power set, 
the concepts of mass of belief and Bayesian probability are identical. 

The summation of the belief masses all elements of the 2θ set forms A Belief 

Mass Assignment (BMA).  
For any element X | X ∈2θ the following functions are introduced: 
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For any element X | X ∈2θ it is true that: 
 ( ) ( ) ( ) 1, 2 ,b X d X u X X X

θ+ + = ∈ ≠ ∅  (7) 

As noted above, the 2θ set contains both singletons and compounds. Let X be an 
element of the 2θ set. Then the number of singletons that make up this element is 
called an atomicity and is denoted as |X|. 

Using the concept of atomicity, one can estimate the magnitude of the possible 
overlap of the two elements of the 2θ set. Suppose X , Y ∈2θ, then for Y ≠ ∅ the atomic-
ity of element X relative to element Y is calculated as 
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An index ( )Xa
Y

 is called a relative atomicity. Note that 

( ) 0XX Y a
Y

∩ = ∅ ⇒ =  and ( ) 1XY X a
Y

⊆ ⇒ = . That is, the relative atomicity is 

characterized by a value between zero and one. Relative atomicity of the atomic hy-

pothesis (singleton) to its FoD, denoted by ( )Xa θ , may be written as a(X). If nothing 

else is specified, the relative atomicity of an element then refers to FoD. 
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The E(X) function is the equivalent of a pignistic probability used in DSTE [28] 
and is a convenient criterion to evaluate uncertainty of the BMAs and the probability 
distributions. In the given study, we will utilize the E(X) function to evaluate the un-
certainty degree of the classification results. 

Quite often, the researcher is not interested in all elements of the θ set, but only 
in some element X | X ∈2θ. In such cases, to simplify the calculations, it is proposed to 
convert initial multi-element set θ into a new Xθɶ  set with the following properties: 

• the Xθɶ  set contains only two elements: X and its addition ¬X, 

• the ВМА Xmθɶ  in the Xθɶ  set is such that the values of the belief, disbelief, and 
uncertainty functions for X element remain the same as they were in the initial 
set θ, that’s: 
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A binary set Xθɶ  with BMA Xmθɶ  satisfying (10), is called A Focused Frame of 

Discernment with focus on X. The focused relative atomicity of X is expressed as fol-
lows: 
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The operation of converting a multi-element set θ into a binary set Xθɶ  plays an 
important role in situations when there are several different hypotheses according to 
the X element and the problem of combining them arises. The atomic element X of a 
binary set Xθɶ  is called an opinion and is represented by a tuple 
 ( ) ( ) ( ) ( ) ( )( ), , ,w X b X d X u X a X=  (12) 

where elements of the tuple are calculated by Eqs (4)-(6) and (8).  
A significant advantage of the presentation (12) is that the uncertainty degree for 

the X element is given here in an explicit form. In practice, several different opinions 
may exist regarding the same element, and then the problem of combining them arises.  

This problem is solved in SL quite simply and elegantly. Suppose, there are two 
different opinions about the same element X: 
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 ( ) ( ) ( ) ( ) ( )( ), , ,l l l l l
q q q q qw X b X d X u X a X=  (13a) 

 ( ) ( ) ( ) ( ) ( )( )1 1 1 1 1, , ,l l l l l
q q q q qw X b X d X u X a X+ + + + +=  (13b) 

Then the combination of these two opinions can be written as the tuple 

 ( ) ( ) ( ) ( ) ( )( ), 1 , 1 , 1 , 1 , 1, , ,l l l l l l l l l l
q q q q qw X b X d X u X a X+ + + + +=  (14) 
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The tuple (14), whose elements are calculated with help of Eq. (15), is called a 
consensus [29].  

So, now we have the opportunity to present a core result of our study – a new 
method for computer-aided analysis of aerial and satellite multispectral images. 

4 Results 

Suppose the digital multispectral image to be analyzed consists of the L zonal images. 
The procedural scheme of the proposed method is shown in Fig. 1. 

The proposed method consists of 10 steps. Let us move on to describing their 
content. 

4.1 Digital Image Processing 

The digital processing procedure itself includes radiometric and geometric correction 
of each of L “raw” zonal images, as well as their georeferencing (what corresponds to 
2A Level of the image processing [30]). As a rule, the corrected and georeferenced 
zonal images are presented in the GeoTIFF format. 

If the external conditions that existed at the moment when the image was formed 
(for example, the state of the atmosphere) are known, then at this step, a posteriori im-
age processing can also be carried out. Such processing will help reduce aleatory un-
certainty. 

We emphasize that all computations are conducted under the guidance of the O-I. 

4.2 Visual Analysis of Digital Image 

The O-I studies the multispectral image in a visual way, selects objects of interest 
within each of the zonal images, and determines their coordinates.  
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Fig. 1 Procedural scheme of the proposed method 

4.3 Cognitive Classification 

At this step, the O-I performs the visual (cognitive) classification of the selected ob-
jects. 

Assume the O-I has concluded that the image under consideration contains Q ob-
jects belonging to K different classes. For K classes, there will accordingly be K 
different hypotheses H, and the set of these hypotheses can be considered as FoD 
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 { }1, , , , , 1,2, ,k KH H H k Kθ = =… … …  (16) 

From the elements of this set, one can compose a power set. For example, if 
K = 3, then the power set will look as follows: 

 { }1 2 3 12 13 1232 , , , , , ,H H H H H H
θ = ∅  (17) 

where H12 = H1 ∪ H2, H13 = H1 ∪ H3, H23 = H2 ∪ H3, H123 = H1 ∪ H2 ∪ H3 
Each element Hj into the 2θ power set has its own belief mass mj. This fact is 

written as a pair (Hj, mj). So, the O-I gives out the cognitive classification result for an 
arbitrary object Xq in the l-th zonal image in the following form: 

 ( ) ( ) ( ) ( ){ }1 1, , , , , , ,l l l l l l l
q q j q j J q JR X H X m H X m H X m= … …  (18) 

where ( )l
j qH X  – the hypothesis according class belonging of the Xq object; l

jm  – the 
belief mass for the ( )l

j qH X  hypothesis; 2 1; 1, 2, , ; 1, 2, ,KJ l L q Q= − = =… … . 
In total, for each object of interest, the O-I gives out L results regarding its possi-

ble class belonging in a form (18). Each such a result is the set of hypotheses, which 
can contain from 1 to K focal elements. However, SL manipulates not by hypotheses, 
but by opinions; so, the next step is required. 

4.4 Converting Hypotheses into Opinions 

Some hypotheses of FoD can be presented within the 2θ power set (17) not only once, 
but they can also be presented here as a disjunctive element of compound hypotheses. 
We need to obtain the BMA for a set whose elements will be only singletons. 

In addition, it should take into account that the transition from the initial set θ to 
the binary set Hθɶ  is complicated by the presence of an interdependence between the 
expected probability E( l

kH )of each hypothesis (Eq. (9)) and relative atomicity 
Xaθɶ ( l

kH ) (Eq. (11)). This interdependence can be eliminated with the procedure of the 
hierarchical probability transformation, proposed in [31]. Its essence is as follows. 

Suppose there are FoD θ = { 1 2 3, ,l l lH H H }and the power set including both atomic 
and compound hypotheses: 
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, , , , , , , ,
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, , , , ,

l l l l l l l l

l l l l l l

H m H m H m H m

H m H m H m

θ
  =  
  

 (19) 

Each of the hypotheses l
nH  has a corresponding belief mass l

nm  (here 
n = 1, 2, 3, 4, 5, 6, 7). Then the procedure of hierarchical probability transformation 
can be explained with help of Fig. 2. 

The transforming operation begins with the reallocation of the mass of the three-
term hypothesis 〈 123 123,l lH m 〉 ≡ 〈 1 2 3 123,l l l lH H H m∪ ∪ 〉 to the masses of the two-term sets 
〈 1 2 12,l l lH H m∪ 〉, 〈 1 3 13,l l lH H m∪ 〉,〈 2 3 23,l l lH H m∪ 〉.  

This stage occurs by adding to their masses the product of the mass 123
lm  of the 

compound hypothesis 123
lН  by a reallocation factor that characterizes the proportion of 

the corresponding mass in the total masses 12
lН , 13

lН , and 23
lН . 

In the second stage, the two-term hypotheses-disjunctions are decomposed in the 
singletons 1

lН , 2
lН , and 3

lН , and for each of them mass is determined in the same 
way. The reallocation of masses between the hypotheses at these stages is carried out 
in accordance with the expression: 
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Fig. 2 Explanation of hierarchical probability transformation procedure 
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where R(H(λ−1), H(λ)) is the proportional reallocation factor, which is calculated in 
the following way: 
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where λ is the transformation stage. 
Therefore, generally, the result of the application of the hierarchical probability 

transformation procedure will be the decomposition of an initial set of N atomic and 
compound hypotheses only atomic hypotheses (singletons) with determination of the 
probability (mass) of each hypothesis. 

Thus, taking into account Eqs (4)-(6), (11), (20), and (21), on the basis of the hy-
potheses defined in step 3, belief b(‧), disbelief d(‧), and uncertainty u(‧), expected 
probability E(‧), and relative atomicity ( )Xaθ ⋅ɶ  can be calculated, as well as the rele-
vant opinions can be formed. 

If now we will rely on the probability distributions of the hypotheses that have 
been by the O-I within a framework of a zonal image in study, then the described 
above procedure of hierarchical probability transformation allows one to obtain the 
opinion regarding the class belonging of each selected object: 

 ( ), , , , 1, 2, , , 1,2, ,l l l l l l
k k k k k kH w b d u a l L k K⇔ = =… …  (22) 

4.5 Correction of Cognitive Errors 

As pointed out in Section 2, one of the factors limiting classification accuracy is cog-
nitive bias of the O-I. However, the methodology of our study assumes the possibility 
of algorithmic correction of cognitive errors. Our method provides for algorithmic 
correction (mitigation) of a cognitive error that occurs when, due to a lack of infor-
mation, the operator unreasonably levels the probabilities of hypotheses.  
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Let us introduce the necessary explanations. Suppose the task is to establish 
whether the object under consideration can belong to some class c, but there is no 
information about this object. The usual practice in such cases is that the O-I makes an 
equiprobable conclusion about the belonging / non-belonging of the given object to the 
specified class. In accordance with categories of SL, this conclusion is expressed 
through the corresponding opinion 

 ( ) ( ), , 0.5,0.5,c c c c cw b d u u=  (23) 

If to accept the condition (7), then the value of cu  into (23) should be equal to 
zero, but this contradicts the reality (the initial uncertainty has not disappeared any-
where). Thus, making the equiprobable conclusion, the O-I commits a cognitive error. 
To correct this error, a procedure for maximizing uncertainty [32] is proposed. 
Through this procedure, the opinion ( ) ( ) ( ) ( ) ( )( ), , ,w X b X d X u X a X= is trans-

formed into an opinion ( ) ( ) ( ) ( ) ( )( )ˆ ˆˆ ˆ ˆ, , ,w X b X d X u X a X=  in which uncertainty that 

occurs due to the lack of information is maximally reflected. 
The procedure is performed according to the formulae: 
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( ) ( ) ( )

( )
( ) ( )

ˆ 0

ˆ 1

ˆ

ˆ

b X

b X
d X u X

a X

b X
u X u X

a X

a X a X

 =

 = − −


 = +



=

 (24a) 

if E(X) > a(X) then 
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( ) ( ) ( )

( )
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ˆ 1
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ˆ
1

ˆ

d X
b X u X

a X

d X

d X
u X u X

a X

a X a X


= − − −

 =

 = + −
 =

 (24b) 

Thus, for any q-th selected object (q = 1, 2,..., Q), L tuples are formed, each of 
which consists of K independent opinions regarding their possible class belonging: 

 

( ) ( ) ( ){ }

( ) ( ) ( ){ }

( ) ( ) ( ){ }

1 1 1
1

1

1

ˆ ˆ ˆ, , , ,
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ˆ ˆ ˆ, , , ,

q k q K q

l l l
q k q K q

L L L
q k q K q

w X w X w X

w X w X w X

w X w X w X











… …

⋮ ⋮ ⋮

… …

⋮ ⋮ ⋮

… …

 (25) 

The next task is to unite (combine) these opinions and thus obtain a set of con-
sensus opinions. 
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4.6 Forming Consensus Opinions Set (COS) 

A process of combining opinions from Eq. (25) separately for each of classes is con-
ducted using Eqs (13)-(15). The process starts from combining ( )1ˆ qkw X  and ( )2ˆ qkw X  
opinions. After that, the ( )1,2ˆ qkw X  result is combined with the ( )3ˆ qkw X  opinion and so 
on. Upon completion of (L - 1) combining operations, the ( )cons

qkw X  consensus opin-
ion is formed for the q-th object regarding its belonging to the k class. 

In a similar way, the consensus opinions are formed about belonging of the object 
under consideration to each of the remaining (K − 1) classes and, thus, the COS is 
formed for the q-th object: 

 ( ) ( ) ( ){ }cons cons cons
1 , , , ,q k q K qw X w X w X… …  (26) 

The fact that the COS (26) contains not one but K alternatives for the class of the 
object in question means that there is inherent epistemic uncertainty. Since the quality 
of decision on the object class belonging depends directly on the degree of the existing 
uncertainty, it is necessary to get the estimation of this degree. 

4.7 Calculation of the Uncertainty Degree of COS 

Consider how this step is performed on the example of the Xq object with the COS 
(26). Knowing the set (26) for q-th object allows us to calculate the distribution of the 
expected probabilities by Eq. (9): 

 ( ) ( ) ( ) ( ){ }1 , , , ,q q k q K qE X E X E X E X= … …  (27) 

To estimate the uncertainty of the distribution of expected probabilities (27), we 
use A Probability Information Content Index (PIC) introduced by J. Sudano [33]: 

 ( )
( ) ( )( )2

1

2

log

1
log

K

k q k q

k
q

E X E X

PIC E X
K

=
⋅

  = + 

∑
 (28) 

A PIC value of zero indicates that all the opinions have the same expected proba-
bility value and so it is not possible to classify the object. This is a case of full 
ignorance (i.e. of maximal uncertainty). A PIC value of one indicates that an expected 
probability value of one has one opinion only, i.e. in this case, there is no uncertainty. 
Thus, the PIC is a simple and convenient index for estimating the uncertainty degree 
of the consensus opinions. 

4.8 Checking Acceptability of the Uncertainty Degree of COS 

Let the COS{ cons
1w (Xq),…, cons

kw (Xq),…, cons
Kw (Xq)} be characterized by the distribution of 

the expected probabilities Econs(Xq) = { cons
1E (Xq),…, cons

kE (Xq),…, cons
KE (Xq)}. The uncer-

tainty degree of specified COS will be estimated using PIC[Econs(Xq)]. Then the 
criterion of acceptability of the uncertainty degree of the COS can be written by ine-
quality: 

 ( )cons
thdqPIC E X PIC  ≥   (29) 

where PICthd is the threshold. 



Advances in Military Technology, 2021, vol. 16, no. 2, pp. 309-331 321

If inequality (29) is held, then this fact indicates that the uncertainty degree of the 
COS (26) allows one to make a cogent decision on the class of the Xq object. Our ex-
perience shows that the PICthd value should be about 0.5, not less. 

Failure to meet inequality (29) indicates high degree of the epistemological un-
certainty which may be reduced by attracting (“pulling up”) geospatial context 
(geomorphological, hydrographic, landscape information, digital terrain maps, digital 
elevation model, and so on). The required information is stored in a database. 

4.9 Forming Supplementary Opinions 

The proposed approach is based on the assumption that it is possible to improve the 
accuracy of object classification in aerial and satellite images by incorporating geospa-
tial information (information about the terrain) into the classification process.  

The fact is that each class of military objects has the corresponding restrictions 
according to the conditions of the operation and the combat use, and these restrictions 
are determined by the tactical and technical specifications of the objects of a class. 
A significant part of these restrictions is related to the surrounding terrain, its charac-
teristics, and state. Therefore, after analyzing the information about the characteristics 
of the given area, it is possible to establish how “friendly” (acceptable) this area is for 
objects of the certain class. Based on the results of such an analysis, supplementary 
opinions can be formed and introduced into the decision-making process about the 
class of the object under study. 

As stated above, the need for supplementary opinions arises in cases where ine-
quality (29) does not hold. Let us consider the procedure of forming the supplementary 
opinion on the following example. Assume, the O-I selected some object Xq in two 
different zonal images of the same area of terrain at the point with coordinates (xq, yq) 
and conjectures that the specified object can be either a Tank (H1 hypothesis) or an 
Infantry Fighting Vehicle (IFV) (H2 hypothesis). 

Suppose visual analysis of the first zonal image led to the following result: 

 { } ( )
1 1 1 1
1 2 1 2 ,
,0.6 , ,0.1 , ,0.3

q qx y
H H H H∪  (30a) 

and visual analysis of the second zonal image yielded the following result: 

 { } ( )
2 2 2 2
1 2 1 2 ,

,0.2 , ,0.6 , ,0.2
q qx y

H H H H∪  (30b) 

Having hypotheses (30), it is not difficult to go to the opinions: 
w1(Tank) = (0.6, 0.1, 0.3, 0.5), w1(IFV) = (0.1, 0.6, 0.3, 0.5), 
w2(Tank) = (0.2, 0.6, 0.2, 0.5) and w2(IFV) = (0.6, 0.2, 0.2, 0.5). 

After that, using the Eq. (24), we correct the cognitive error of the O-I and then 
have: ŵ1(Tank) = (0.5, 0.0, 0.5, 0.5), ŵ1(IFV) = (0.0, 0.5, 0.5, 0.5), 
ŵ2(Tank) = (0.0, 0.4, 0.6, 0.5) and ŵ2(IFV) = (0.4, 0.0, 0.6, 0.5). 

Combining these opinions and applying the Eq. (15), we obtain the pair of the 
consensus opinions: 

 ( ) ( ) ( ) ( )cons consTank 0.38,0.25,0.38,0.50 , IFV 0.25,0.38,0.38,0.50w w= =   (31) 

Having the consensus opinions (31), we calculate the expected probability Econs(‧) 
for the opinions “Tank” and “IFV”: 
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 ( ) ( ){ }cons consTank 0.56, IFV 0.44E E= =  (32) 

According to the procedural scheme of the method (see Fig. 1), it is necessary to 
assess the uncertainty degree of the pair of consensus opinions (30). To do this, we 
substitute the values (32) of the expected probability for the “Tank” and the “IFV” 
opinions into the Eq. (28) and get PIC[Econs(Xq)] = 0.01. 

If to take PICthd = 0.5, inequality (29) for the pair (31) does not hold. This fact 
indicates that the specified set by its uncertainty degree is not able to ensure a cogent 
decision on the class of the object. Therefore, supplementary information is needed to 
reduce the level of existing uncertainty.  

Let see how to get such information using the following example. It is known 
that a Tank and an IFV have different hill climb angles. As a rule, for tanks, a hill 
climb angle is usually about 30°, and for IFVs this angle is slightly larger, about 35°. 
This difference between climb angles can be used to form a supplementary opinion.  

Knowing the coordinates (xq, yq) of the selected object Xq, the O-I requests the 
digital map of the area under study from the database selects the layer of terrain relief 
and receives information about the relief steepness value. Suppose the steepness value 
within this area turned out to be 32°. Then, comparing the relief steepness angle with 
the hill climb angles, one can more accurately establish class of object in question. 

Let β is a relief steepness within the area of location of the Xq object and γt and γv 
are hill climb angles of the Tank and the IFV correspondingly. Then support for hy-
pothesis H1 (Xq object is Tank) may be expressed by the probability 

 ( ) ( )
1

0.95, if 0
0, otherwise

tP H
γ β − >= 


 (33) 

and the support for the Н2 hypothesis (Xq object is IFV) may be written as the proba-
bility 

 ( ) ( )
2

0.95, if 0
0, otherwise

vP H
γ β − >= 


 (34) 

Moving from the hypotheses (33) and (34) to the opinions, we get arguments-
opinions according to which the Xq object is either the Tank: 

 ( ) ( ) ( )sup supis Tank Tank 0,0.95,0.05,0.5qw X w= =  (35) 

or the IFV: 

 ( ) ( ) ( )sup supis IFV IFV 0.95,0,0.05,0.5qw X w= =  (36) 

The opinions (35) and (36) may be joined into the tuple: 

 ( ) ( ){ }sup supTank , IFVw w  (37) 

Considering the supplementary opinions from the tuple (36) and the consensus 
opinions (31) together, and omitting the calculations foreseen at the step 6, we can 
formulate the opinions pair: 

 ( ) ( ){ }Tank , IFVw w  (38) 

The expected probability for each of the two hypotheses into the opinions set (37) 
will have the following values: E(Tank) = 0.07, E(IFV) = 0.93. Substituting these 
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values in the Eq. (29), we find: PIC = 0.64. Comparing this value with PICthd = 0.5, 
one can conclude that the uncertainty degree of the opinions pair (38) formed with the 
involvement of supplementary information allows one to proceed to the final step 10. 

If the given supplementary opinion including in the COS did not ensure the satis-
faction of inequality (29), the O-I queries the database in order to form the next 
supplementary opinion, and so on. As soon as inequality (29) is satisfied, the process 
of COS forming ceases, after which the final decision on the class belonging of the 
object under consideration is made. 

However, there may be situations when the uncertainty of the consensus set does 
not decrease (inequality (29) does not hold) with the increase of the number of sup-
plementary opinions. For similar cases, a stop mechanism is foreseen which is 
implemented using a query counter and a limiter (see Fig. 1). The counter registers all 
queries of the O-I to the DB, and their total number G is compared with the Gthd 
threshold. If G ≤ Gthd, then the current query is made to the database and a new sup-
plementary opinion is formed. If the G number of the formed supplementary opinions 
has exceeded Gthd number, then the transition is carried out to the procedure of final 
decision-making regarding the class of the Xq object under consideration. 

4.10 Decision-Making 

Assume there is a full set of classes C = {c1, ..., ck, ..., cK} and a set of K consensus 
opinions  

 ( ) ( ) ( ){ }cons cons cons
1 , , , ,q k q K qw X w X w X… …  (39) 

regarding possible classes of some object Xq. It is also assumed that the distribution of 
the expected probabilities ( ) ( ) ( ){ }cons cons cons

1 , , , ,q q qKkE X E X E X… …  of these opinions 

is known. 
Then the final decision on the class belonging of the Xq object is determined by 

that opinion from (39), which has the highest value of the expected probability.  
Formally, this decision rule is noted as follows: the object Xq under consideration 

refers to the *k
c  class ( )*kc C⊂ , the label of which is defined as 

 ( ){ }* cons

1,2, ,
subscript max k q

k K
k E X

=
 =  ⋯

 (40) 

We emphasize once more that the steps from the third to the tenth are performed 
separately and independently for each of the Xq objects (q = 1, 2, ..., Q) which have 
been selected by the O-I at the second step. 

5 Modeling 

The performance of the proposed method was evaluated by modeling using simulated 
multispectral image compiled from 4 zonal mages in raster format. The image consists 
of a scene including 32 objects of three different classes – tanks, light armored multi-
purpose towing vehicles, and armored personnel carriers. The modeling was carried 
out leveraging the ESRI ArcGIS. 

The multispectral image was presented to the highly skilled O-I for the visual 
analysis. Analyzing this image, the O-I has selected all 32 objects and determined the 
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coordinates of each of them. The classification of each zonal image was performed by 
the O-I separately.  

The result of the cognitive classification of each object Xq into each of the L zon-
al images was expressed in the following form: 

 ( ) ( ) ( ) ( ){ }1 1, , , , , , ,l l l l l l l
q q j q j J q JR X H X m H X m H X m= … …  (41) 

Unfortunately, in general case among hypotheses within (41), there can be not 
only atomic but also compound hypotheses, and this fact complicates obtaining an 
unambiguous decision on the class belonging of the objects under consideration. How-
ever, the problem can be solved using the concept of pignistic probability introduced 
in [28].  

The pignistic probability for any Hk hypothesis is calculated as follows: 

 ( ) ( )
,

2

BetP ; 1,2, ,
k j

j

j

k

H H j

H

m H
H k K

H
θ

∈
∈

= =∑ …  (42) 

where |Hj| – the cardinal number of the Hj set. 

Then the class of any object Xq (q = 1, 2,…, Q) is determined by the hypothesis 
within (41), which has the highest value of the pignistic probability. 

In this way, the cognitive classification of each zonal image was carried out and 
the corresponding decisions were made regarding each of the 32 objects. The probabil-
ity of correct classification of the objects separately for each zonal image of the 
multispectral image is given in Tab. 1. 

Tab. 1 Probabilities of correct classification 

Zonal image (l) Probability of correct classification 

l = 1 0.61 

l = 2 0.64  

l = 3 0.63 

l = L = 4 0.72 
 

Thus, the probability of the correct classification of objects in the digital multi-
spectral image under study was, on the whole, 0.65. 

Further work aimed at improving the classification accuracy was carried out us-
ing a computer model built in the ESRI ArcGIS. 

Input data for the computer model are: 
• the results of cognitive (visual) interpretation of the digital multispectral image 

in the vector formаt, 
• the raster layers, depicting the earth’s surface (ES) and the terrain relief (RT), 

and the vector layer portraying the road network (RN).  
To model the proposed method, a SLTToolbox toolkit (Fig. 3) was developed in 

the ArcGIS ModelBuilder (ArcGIS Desktop Advanced 10.7). The ArcGIS Spatial 
Analyst for Desktop 10.7 module was additionally used, as well as the LUPTool.ру 
script on the Python. 

The SLTToolbox toolkit consists of four tools: LUPTool, 
LUP&FirstSupplementOpinion, LUP&TwoSupplementOpinions, and 
LUP&ThreeSupplementOpinions. 
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Fig. 3 SLTToolbox toolkit 

The LUPTool tool is built on the basis of the LUPTool.ру script and has the pur-
pose to form the consensus opinion based on data sources that are represented in the 
vector format. In our case, such sources may be: 

• the results of cognitive (visual) interpretation of the 4 zonal images of the digi-
tal multispectral image,  

• the consensus opinion (Positions) formed by the way combining the results of 
visual interpretation of the 4 zonal images, and geospatial information about the 
terrain characteristics (LC, RT, and RN). 

The LUP&FirstSupplementOpinion tool is intended to form the consensus opin-
ions using:  

• the consensus opinion (Positions) formed on the base of the results of the visual 
interpretation of the digital multispectral image,  

• geospatial information related to any one of 3 context elements: LC or RT or 
RN. 

The LUP&TwoSupplementOpinions tool is intended to form the consensus opin-
ions using: 

• the consensus opinion (Positions) formed on the base of the results of the visual 
interpretation of the digital multispectral image, 
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• geospatial information related to any pair of 3 context elements: (LC & RT) or 
(LC & RN) or (RT & RN). 

The LUP&ThreeSupplementOpinions tool is intended to form the consensus 
opinions using: 

• the consensus opinion (Positions) formed on the base of the results of the visual 
interpretation of the digital multispectral image, 

• geospatial information related to 3 context elements: ES & TR & RN. 
The implementation of the LUP&ThreeSupplementOpinions tool in the ArcGIS 

ModelBuilder is shown in Fig. 4. Further on, the computer model was published using 
ArcGIS Server 10.7 as an asynchronous geoprocessing service that was integrated into 
Portal for ArcGIS 10.7 (Fig. 5). In addition, the input data (Positions, ES, RT and RN) 
were published separately as a map service. For this service, the map cache is not 
created. Raster data are presented in GRID format, vector data are presented in SHP 
format. 

 

Fig. 4 LUP&ThreeSupplementOpinions tool’s schema in the ArcGIS ModelBuilder 

At the process of modeling, the decision on the class of any object Xq was being 
formed as follows. If the opinion of the O-I regarding the class of the Xq object had 
a relatively small uncertainty, namely: inequality PIC[Econs(Xq)] ≥ 0.5  was held, then 
the passage to the block 10 was directly carried out, where the final decision on the 
object class was made in accordance with the Eq. (39). 

If the opinion of the O-I regarding the class of the Xq object had a significant un-
certainty (PIC[Econs(Xq)] < 0.5  case), the request into the database was being 
generated in order to obtain a new portion of the needed geospatial information (this is 
the corresponding digital terrain map layer), and after that the revised opinion was 
being formed. 

Three variants of the classification were being studied: 
• (V/1) when the final decision on the class of the object was made attracting 

contextual information about the ES only (G = 1 case), 
• (V/2) when the final decision on the class of the object was made attracting 

contextual information about the ES and the TR (G = 2 case), 
• (V/3) when the final decision on the class of the object was made attracting 

contextual information about the ES, the TR, and the RN (G = 3 case). 
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Fig. 5 Interface of geoportal with geoprocessing tool 

The interface of the geoportal with the results of the object classification for last 
case (V/3) is shown in Fig. 6. 

The results of modeling (Tab. 2) confirm the validity of the idea that increasing 
the amount of contextual geospatial information incorporated into the classification 
process allow appreciably to improve the classification accuracy. So, if the accuracy of 
cognitive classification (the visual analysis result of the multispectral image by the O-
I, i.e. V/0 variant) was 0.65, then the involvement of contextual information about the 
ES only (V/1 variant) made it possible to increase the accuracy to 0.78; and the joint 
attracting contextual information about the ES, the TR, and the RN (V/3 variant) pro-
vided an increase in accuracy up to 0.93. 

Comparison of the results of cognitive classification (V/0 variant) and classifica-
tion with attracting the geospatial context (V/3 variant) shows that the probability of 
correct classification was increased by 1.43 times. 

 

Fig. 6 Interface of geoportal with classified objects 
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Tab. 2 Probabilities of correct classification of objects 

Variant 
Threshold 

Gthd 

Attracted context geospatial 

information 

Probability of cor-

rect classification 

V/0 0 without geospatial information 0.65 

V/1 1 ES 0.78 

V/2 2 ES & TR 0.84 

V/3 3 ES & TR & RN 0.93 

6 Discussion  

Today’s means of intelligence data acquisition make it possible to obtain huge 
amounts of information, but the processing of this information is a serious problem. 
Therefore, analysts are assisted by computerized systems of information support and 
decision-making [34]. The most advanced systems of this kind include Disciple-EBR 
[35] and GEOART [36]. 

The Disciple-EBR system helps the analyst perform the calculations necessary 
for solving such issues as information retrieval, evidence checking and argumentation, 
hypothesis validation, etc. The GEOART is a tool for the semiautomated analysis of 
geospatial data (on the base of the artificial intelligence techniques) and the geoinfor-
mation products generation. 

However, both the named and other known similar systems are designed to help 
the О-I under strictly defined scenarios and classes of objects of interest, without tak-
ing into account the model of human decision-making; besides, the interaction of the 
human and the computer system is situational. Therefore, the creation of new methods 
and systems for the information support of the O-I is a topical issue. 

Our method for computer-aided analysis of aerial and satellite multispectral im-
ages is largely free of the above disadvantages. Since the primary classification is 
carried out by the O-I, then there is an opportunity to work with a wide variety of 
ground scenes and an open nomenclature of objects of interest. The method allows to 
correct (mitigate) possible cognitive errors of the O-I, and all operators classification 
decisions go through the computer. 

A certain disadvantage of the developed method is that when deciding on the 
class of the object in question, information about the presence, class and location of 
other objects of interest is not taken into account. In principle, such information could 
be useful in complex classification cases. 

7 Conclusion 

In the paper, the new method to improve the classification accuracy of objects in digi-
tal multispectral images is proposed. The core idea of the research is to increase the 
accuracy of object classification in aerial and satellite images via incorporating context 
in the form of geospatial information about the terrain into the classification process. 
The idea is implemented with help of the multi-step procedural scheme. As a mathe-
matical basis of the developed method, the authors used SL of A. Jøsang. 

The efficiency of the proposed method was assessed with help of computer mod-
eling. For this purpose, the special SLTToolbox toolkit was developed in the ArcGIS 
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ModelBuilder. The basic element of the toolkit is the script LUPTool.py in Python. 
The results of modeling have demonstrated the effectiveness of the proposed method. 

Further work of the authors is expected to be aimed at simplifying the procedure 
for searching for geospatial information necessary to make a final decision on the class 
of each object under consideration. It will also be interesting to develop more efficient 
algorithms for correcting (mitigating) typical cognitive errors of OI. 
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