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Abstract:  

The knowledge of velocities of a remotely operated underwater vehicle (ROV) is crucial 

for the study of the ROV motion. The ROV motion equations are complemented by hy-

drodynamic parameters and forces acting upon the ROV. The matrices of hydrodynamic 

damping coefficients and external forces acting upon the ROV are considered in this 

study as well. The computational results obtained by the Runge-Kutta method are com-

pared with the experiment. It appears that the presented model can be useful for the 

design and investigation of remotely operated underwater vehicles. 
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1. Introduction 

Remotely operated underwater vehicles are widely used for underwater survey mis-
sions such as the location, positioning and identification of various submerged 
structures and objects. ROVs have been used for inspection works, for example, pipe-
line surveys, jacket inspections and marine hull inspection of vessels. They are also 
used to assist with the exploration of ocean resources and with the protection of ma-
rine environment. The military use of ROVs is primarily for naval mine-hunting and 
mine-breaking. 

There are numerous research studies in the field of underwater vehicles in the 
world. Many investigations of underwater vehicles motion assume the body geometry 
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having three planes of symmetry that substantially simplifies the mathematical model 
of motion. For example, Gomes et al. [1] studied the ROV motion of three planes of 
symmetry at the University of Porto. Likewise, Marzbanrad et al. [2] applied the three 
planes of symmetry for design and control of ROV, built in the Shiraz University Ro-
botic Lab. In addition, Eidsvik and Schjølberg [3] from the Norwegian University of 
Science and Technology used three planes of symmetry for the evaluation of hydrody-
namic parameters that characterize their ROV behaviour. In these studies, the matrices 
of ROV hydrodynamic damping coefficients are diagonal. 

In this study, the research is focused on the complex-shaped ROV with two 
planes of symmetry and one asymmetric plane. The solution results for the ROV mo-
tion are then compared with the experiment. The configuration of the examined ROV, 
consisting of the main body, two lights, two thrusters, and two balance flotation blocks 
is shown in Fig. 1. 

 

Fig. 1 Concept of 3D ROV model 

2. Mathematical Model of the ROV Motion 

The developed mathematical model provides solutions for velocities, hydrodynamic 
parameters and forces acting upon the ROV.  

2.1. Coordinate Systems 

There are two coordinate systems used to describe the ROV motion: the earth-fixed 
coordinate system (O0, X0, Y0, Z0) and the ROV body-fixed coordinate system (O, X, Y, 
Z). Both of the coordinate systems are shown in Fig. 2. 

Here: 
• η1 = [x, y, z]T is the position vector and η2 = [ϕ, θ, ψ]T is the orientation vector 

of the ROV in the earth-fixed coordinate system (O0, X0, Y0, Z0). Operator T re-
fers to the matrix transformation, 

• τ1 = [X, Y, Z]T and τ2 = [K, M, N]T are the total forces and momenta acting on 
the ROV in the body-fixed coordinate system (O, X, Y, Z), 

• V = [ν1, ν2]T = [u, v, w, p, q, r]T, where ν1 = [u, v, w]T and ν2 = [p, q, r]T are the 
translational and rotational velocities of the ROV in the body-fixed coordinate system 
(O, X, Y, Z). 
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Fig. 2 Earth-fixed (O0, X0, Y0, Z0) and body-fixed (O, X, Y, Z) coordinate systems 

2.2. Model Assumptions 

To reduce the model complexity, the following simplifying assumptions are made:  
• ROV has two planes of symmetry: port-starboard plane, fore-aft plane, 
• ROV is a rigid body of constant mass, 
• ROV is deeply submerged in a homogeneous unbounded fluid, 
• the effects of surface waves, underwater walls and bottom are ignored, 
• the linear and angular couple of terms in damping is neglected, 
• the damping terms of the second and higher orders are neglected. 

The fore-aft plane symmetry is admitted due to the geometric similarity of lights 
and thrusters. 

2.3. Model of the ROV Motion 

The first coordinate transform relates to translational velocities of the ROV between 
the two coordinate systems [4]: 
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The second coordinate transform relates to rotational velocities of the ROV be-
tween the two coordinate systems [5]: 
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with 
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The relative velocity between the ROV and the surrounding water flow is defined 
as follows:   
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waterr
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The set of equations describing the ROV motion can be written as follows [3]: 

 ( )RB RB+ =M V C V V τɺ  (6) 

where  
• MRB is the generalized mass matrix of the ROV, 
• CRB is the Coriolis force and central force matrix, 
• τ are the total forces and momenta acting upon the ROV. 
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where 
• τHS  is the restoring force and moment vector, 
• τD  is the damping force and moment vector, 
• τA  is the added mass force and moment vector, 
• τFK is the Froude-Krylov force vector, 
• τP  is the thruster force from two propellers vector. 

The restoring force and moment vector τHS is given by the following formula: 
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here 
• W = m g is the gravity of the ROV at the mass centre, 
• B = ρ g VROV is the buoyancy force of the ROV at the buoyancy centre, 
• g is the acceleration due to gravity, 
• VROV is the ROV volume, 
• m is the ROV mass in the air, 
• ρ is the water density, 
• xb, yb, zb and xG, yG, zG are the positions of the centre of buoyancy and the centre 

of gravity with respect to the origin coordinate, respectively. 
The damping force and moment τD is given by the following formula [5]: 
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 ( )D = r rτ D V V  (9) 

where D(Vr) is the hydrodynamic damping matrix that is written as [3]: 
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here , , , , , , ,
u u v v w w p p q q r r v v u u

X Y Z K M N K M  are the quadratic damping coefficients, 

which may be calculated by using the following formula [6, 7]: 

 | | d dc dc

1 1 1
, ,

2 2 2
u u fx fy fzv v w w

X c A Y c A Z c Aρ ρ ρ= − = − = −  (11) 

where 
• ρ is the density of the surrounding water, 
• Afx, Afy, Afz is the ROV frontal area along OX, OY, OZ, 
• cd is the axial drag coefficient of the ROV, 
• cdc is the crossflow drag coefficient of the ROV, 
• , , , ,

p p q q r r v v u u
K M N K M  are the damping moment coefficients of the ROV, 

that can be calculated by using the strip theory [6]. 
The added mass force and moment τA can be calculated by the following 

formula [3]:   

 ( )A A Ar r r = − + τ M V C V Vɺ  (12) 

where MA and CA(Vr) are the added mass and Coriolis-like matrix induced by MA, 
respectively. 

Under the assumptions made, the ROV has two planes of symmetry (port-
starboard plane, fore-aft plane) and one asymmetric plane (bottom-top plane). The 
added mass matrix is calculated as follows [5]: 
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where mij is the added mass coefficient of ROV in the i direction caused by the ROV 
acceleration in the j direction; i, j = 1, 2, 3, 4, 5, 6. 

Based on the work by Fossen [8], the off-diagonal elements of a positive inertia 
matrix are much smaller than the diagonal counterparts. Therefore, the off-diagonal 
elements in the added mass matrix (13) can be neglected. 

The Coriolis-like matrix CA(Vr) is written as follows [5]:  
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The Froude-Krylov force τFK appears due to the inertia matrix of the displaced 
fluid. This force is defined [3, 8] by  

 FK FK water= ɺτ M V  (15) 

where MFK is the Froude-Krylov mass of the ROV. According to the study by Khalid 
Isa [4], the MFK can be considered equal to the mass of the ROV that simplifies the 
solution   

 RBFK =M M  (16) 

The thruster force from the two propellers can be calculated by the following 
formula:   

 [ ]T
P P P P P P P, , , , ,X Y Z K M N=τ  (17) 

here: 
• XP, YP, ZP are the forces from the two propellers along OX, OY, OZ, 
• KP, MP, NP are the momenta from the two propellers around OX, OY, OZ. 

By substituting Eqs (7), (9), (12) into Eq. (6), the set of equations describing the 
ROV motion can be rewritten in the form   

 [ ] ( )RB A RB A HS P( ) ( )r r r r r+ = − − + + +M M V C V V C V V D V V τ τɺ  (18) 

After some algebra, Eq. (18) can be rewritten as follows:   
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where: 

 ( ) ( )RB A HS P( ) ( )r r r rr − − + + +  = C V V C V V D V, τV V V τA  (20) 

and   

 RB A= +M M M  (21) 

3. Validation of the ROV Motion Model  

The mathematical model described above has been solved by the Runge-Kutta method 
using the Fortran programing language. The input parameters to achieve the solution 
are given in Tab. 1. The solving process ran for 20 seconds with the time step of 0.002 
seconds. 

Some solution results for the ROV motion are shown in Figs 3-6. The evolutions 
of the ROV velocity components are shown in Fig. 3. The component of velocity vec-
tor Vx along the O0X0 axis is shown in Fig. 3a. One can see that the velocity Vx is 
invariable after about 5 seconds of moving, as its value reaches 1.65 m/s. The evolu-
tion of the velocity component Vz along the O0Z0 axis is shown in Fig. 3b. This value 
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oscillates around zero. After about 10 seconds, the ROV movement reaches a quasi-
steady state. However, the velocity component Vy along O0Y0 equals zero at all times, 
because the propulsive forces from both of the propellers are equal. These results 
agree well with real observations. 

 

Tab. 1 Model input parameters 

Input parameter Symbol Unit Value 

Mass of the ROV m kg 42.5 
Length of the ROV L m 0.8 
Diameter of the ROV main body D m 0.25 
Moment of inertia Ixx kg m2 0.81 
Moment of inertia Iyy kg m2 2.73 
Moment of inertia Izz kg m2 2.62 
Moments of inertia Ixy, Iyz, Izx kg m2 0 
Length of the light llight m 0.11 
Diameter of the ligth dlight m 0.06 
Length of the thruster lDC m 0.102 
Diameter of the ligth dDC m 0.097 
Length of the balance block lbb m 0.8 
Diameter of the balance block dbb m 0.086 
Density of fluid ρ kg/m3 1000 
Initial velocity of water flow Vwater m/s 0 
Initial velocity of ROV V0 m/s 0 
Initial position of ROV x0, y0 m 0 
Initial depth of ROV z0 m 1 
Initial orientation of ROV ϕ0, θ0, ψ0 rad 0 
Force from each thruster τP N 20 

 
 

 

 

 

 

 

 

 

 

 

 

  a)                                                                      b) 

Fig. 3 Velocity of ROV: a) component Vx along O0X0, b) component Vz along O0Z0 

 
The evolution of the ROV displacement along the O0X0 axis is shown in Fig. 4. 

The maximal displacement is about 32 m after 20 s. 
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Fig. 4 Displacement of ROV along O0X0 axis 

The angle θ oscillations of the ROV around the O0Y0 axis are quite small, as it 
can be seen in Fig. 5.  

 

Fig. 5 Angle θ of ROV around O0Y0 axis 

Nevertheless, as illustrated in Fig. 6, the motion of the ROV around O0Z0 axis os-
cillates quite a lot during the first 10 seconds. After that, the motion of the ROV is less 
fluctuant and tends to being stable. 

 

Fig. 6 Motion of ROV around O0Z0 axis 
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4. Verification of the ROV Motion Model  

The computational results of the ROV motion are compared with the measured values. 
Experiments were held in an experimental water basin. A photo of the ROV prototype 
is shown in Fig. 7 and the schematic diagram of the experimental setup is shown in 
Fig. 8.   

 

Fig. 7 ROV prototype 

 

Fig. 8 Schematic diagram of the ROV experimental setup: 1 – ROV prototype, 2 – 

connecting cable, 3 – ROV control system, 4 – camera, 5 – computer, 6 – water basin 

Velocities of the ROV prototype are measured by the high-speed camera Fast-
Cam SA 1.1 Model 675K-C1. The measuring laptop uses the data processing software 
TEMA. 

This experiment enables to determine the ROV velocity Vx along O0X0 axis in the 
period of its stable motion, i.e. the maximum velocity of the ROV. The range of meas-
urements includes four cases of propulsive forces (5, 10, 15, 20 N) for two distances 
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between thrusters (0.455 m and 0.505 m). The propulsive forces are the same for both 
of the thrusters.  

The comparison of some results of the developed ROV motion model and the 
measured values from the presented experiment for two distances between thrusters is 
given in Tab. 2. 

Tab. 2 Comparison of ROV velocities for two distances between thrusters 

No. 
Thruster force (each)  

τp [N] 
ROV velocity along O0X0  

Vx [m/s] 
 

Difference 

[%] 
I 

Distance between  
thrusters L1 = 0.455 m 

Model Experiment 

1 5 0.8300 0.7759±0.0103 6.97 
2 10 1.1965 1.1261±0.0044 6.25 
3 15 1.3987 1.2758±0.0114 9.63 
4 20 1.6526 1.5109±0.0008 9.38 

II 
Distance between  

thrusters L1 = 0.505 m 
Model Experiment  

1 5 0.8300 0.7971±0.0042 4.13 
2 10 1.1965 1.1636±0.0046 2.83 
3 15 1.3987 1.3515±0.0032 3.49 
4 20 1.6526 1.5616±0.0026 5.83 
 

The comparison in the Tab. 2 shows that the ROV velocities Vx increase with in-
creasing distance between the thrusters. The ROV velocities computed by the ROV 
motion model are larger than those determined from the experiment. It is reasonable 
for the ROV operation under real conditions. The percentage of difference between the 
computational and experimental results is quite small (between 2.83% and 9.63%). 
These results prove that the theoretical method of solution and the ROV motion model 
are appropriate. 

5. Conclusion  

A mathematical model has been developed to study the motion characteristics of the 
complex-shaped ROV with two planes of symmetry and one asymmetric plane. This 
model includes, besides the motion equations, hydrodynamic damping parameters and 
forces acting upon the ROV. The set of equations and matrices presented in this article 
was solved by the Runge-Kutta method using the Fortran programing language.  

The mathematical model was validated for the given configuration of the exam-
ined ROV, consisting of the main body, two lights, two thrusters and two balance 
flotation blocks. Furthermore, the model was experimentally verified through measur-
ing the ROV velocity by a high-speed camera. The presented model provides 
a satisfactory agreement with the measured ROV velocity. 
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