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Abstract:  

The compressibility model was developed and applied to generalized model for predic-

tion of aerodynamic forces acting on irregularly shaped body, such as HE projectile 

fragments. Model assumes adiabatic compression of air in front of high‐velocity frag-

ment since the motion of the fragment is an extremely fast process relative to the heat 

transfer process. The equation of the state of the ideal gas is adopted. Analysis of results 

and comparison with results obtained by numerical simulation (CFD software) and 

experimental data show this correction model significantly reduces the relative error of 

aerodynamic force modelling in the relevant area of the high velocity of the fragment, 

when the air compression is significant.  
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1. Introduction 

Complete aerodynamic characteristics generally do not exist for the potentially wide 

variety of body shapes. For the calculation of the body trajectory, apart from the data 

on projected (exposed) surface area of the body, velocity data and data on the density 

of the fluid through which the body is moving, one needs also the data on the values of 

aerodynamic force acting on the body at any given moment. Values of force are cru-

cial in the calculation of fragment trajectory and its movement through the air. 

It is not practical to determine the values of aerodynamic forces and moments us-

ing numerical simulations (CFD) for each potential shape of a body, so it is useful to 

define a generalized model to estimate the values of total aerodynamic force and aero-

dynamic moment acting on a body with an arbitrary shape.  
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Examples of irregularly shaped bodies are:  

• primary fragments made after the detonation of high explosive projectiles (nat-

ural or controlled fragmentation), missiles, bombs, 

• primary and secondary fragments originating from improvised explosive devic-

es (IED), 

• splinters formed after the rupture of various structures (different materials) due 

to the effects of severe storms (tornadoes and hurricanes, for example, both 

contain strong rotating winds that can cause significant damage), 

• primary and secondary fragments resulting from the explosion of ammunition 

storage sites, 

• meteoroid bodies coming from outer space. 

Generally, most objects in nature are irregularly shaped, so the usefulness of this 

model (in regard of estimation of a trajectory, velocity, energy, and stability of these 

bodies) could be significant for many areas of research. Usually, determination of 

force required for calculation of body centre of mass trajectory (there is no mentioning 

of moment coefficients in the literature), is done using aerodynamic force coefficients.  

These coefficients (coefficients of total aerodynamic force components) are usu-

ally determined analytically or experimentally. Twisdale [1] used cross-flow theory in 

order to analytically estimate the aerodynamic coefficients for a uniformly random 

spatial orientation of the body, knowing the aerodynamic coefficient values for pre-

cisely defined directions of the body with continuous geometry. This approach has 

been used earlier to develop the wind axis aerodynamic forces as a function of an 

angle of attack for slender cylinders knowing only the drag force coefficients for the 

body in normal flow to the major body axes. Twisdale presents cross-flow aerodynam-

ics for rectangular parallelepipeds (approximation of irregularly shaped body), where 

for different parallelepiped lengths (slenderness ratio), drag, lift and side force coeffi-

cients are estimated as a function of attack and roll angle, using analytical expressions, 

where different corrective factors (skin friction and aspect-ratio correction) are also 

used. It is not explained in the paper how the exposed area of a body is determined for 

an arbitrary orientation of a body. Based on the value of the drag, lift and side force 

coefficients, and using the values of dynamic pressure and the reference area of the 

body, a total aerodynamic force is estimated. 

As far as experimental data is concerned, the first thing to notice in the literature 

is that there is no experimental data on aerodynamic lift coefficients for bodies with 

irregular shapes. Furthermore, one of the disadvantages noticed is that most of the 

experimental tests contain very little data on the drag coefficients values in the super-

sonic regime. Another disadvantage is that no (available) experimental research has 

given specific details of how the exposed surface of fragments is determined, as well 

as the data on dimensions and the mass of fragments. These data significantly affect 

the drag coefficient values obtained in experimental tests. Most experimental tests for 

determination of drag coefficients for irregularly shaped bodies were conducted in the 

period from 1955 to 1995, and no data are available on whether more recent tests have 

been conducted with modern data acquisition equipment. Some researchers [2] state 

that the drag coefficient in the subsonic and supersonic flow is assumed constant, 

which in reality is not the case, and it is probably a certain approximation of the drag 

coefficient, due to the lack of data. Other researchers suggest that the drag coefficient 

for fragments can be taken as a constant [3], arguing that the fragments in the initial 

phase of their trajectory move at speeds up to several times higher than the local sound 
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velocity. However, the drag coefficient depends on the shape of a body, as well as its 

velocity, and coefficient variation may have a significant effect on body trajectory, 

a fact that is rarely emphasized in the literature. Generally speaking, the task of esti-

mation of aerodynamic forces and moments acting on a body of an irregular shape is 

quite complex since these irregularly shaped bodies do not have a continuous surface 

(their shape is stochastic). For this reason, in our model, a tri-axial ellipsoid was used 

as a shape that can approximate an arbitrary body shape of different dimensions. This 

model is also a follow-up on our previous work where the exposed area of the irregu-

larly shaped body was estimated.  

In our model [4], irregularly shaped body geometry can be defined parametrical-

ly, and it is possible to estimate the values of total force and moment acting on these 

bodies in a very short amount of time (in a matter of seconds). This is a significant 

advantage of the model in comparison with the method of determination of aerody-

namic force and moment using CFD methods.  

In the available literature, no similar model for the estimation of aerodynamic 

forces and moments for the irregularly shaped body was found, so our model presents 

a step towards a better understanding of flight dynamics of irregularly shaped bodies. 

In the previous paper [5] of the authors, a generalized model for the estimation of 

aerodynamic forces and moments for irregularly shaped bodies (IE fragments of HE 

projectiles, secondary debris) was described, where irregularly shaped body was ap-

proximated with a triaxial ellipsoid. This model is a follow up on the previous work 

[6] of the authors where the exposed area of the irregularly shaped body is estimated. 

These models can be successfully used for the estimation of a trajectory parameters for 

a body with an irregular shape (i.e. shrapnels), and the obtained data can be used for 

the prediction of total range of fragments and lethal zones of HE projectiles. 

Our general model for obtaining aerodynamic force is based on a change in the 

fluid momentum in the surrounding of a fragment. The energy that is spent on the 

movement of fluid (air) is directly taken from the kinetic energy of the fragment. In 

addition to the energy that is spent on fluid motion, part of the kinetic energy of the 

fragment is spent on air compression in front of the fragment. If the adiabatic change 

of the gas state is assumed at this compression, then the work spent on this compres-

sion is directly transformed into internal energy by heating the gas (air), according to 

the first law of thermodynamics. After the passing of fragment, this energy, originally 

in the form of the kinetic energy of the fragment, is further dissipated into the sur-

rounding air. 

The idea of a compressibility model presented in this paper is that by the analogy 

of a compression spring, as shown in Fig. 1, the mechanical work of air compression 

per unit of air mass (specific work) is calculated by determining one parameter of state 

(i.e. pressure) and assuming the adiabatic change in the gas state (since it is an ex-

tremely fast process in relation to heat transfer). Pressure can be estimated for each 

point directly, close to the fragment surface, based on the previously developed model 

[5] and used to determine the specific volume (according to the equation of adiabatic 

change), and to determine the size of air compression at that location. In this way, 

a specific work of adiabatic compression can be determined. Considering this specific 

work in the unit of time and integrating it in the domain of the disturbed air in front of 

the fragment, it is possible to determine the equivalent correction of the aerodynamic 

force which dissipates the same amount of mechanical (kinetic) energy of a fragment. 
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2. Physical Model  

The model for obtaining aerodynamic force, as reported in [5], is based on the law of 

momentum change (similar to the Newton model that is now used for hypersonic mo-

tion) in order to estimate the value of the force acting on the body. Fig. 1 is 

a schematic representation of the surface of the ellipsoidal body (approximating the 

fragment) to which the fluid flow with velocity V is directed, where the normal vector 

for the surface dA is denoted by n and the angle between the velocity vector and the 

normal vector is denoted by δ. Fig. 2 shows a schematic way of solving the problem 

(the output velocity vector is assumed to be perpendicular to the normal vector): fluid 

elements interact with each other immediately after impact on the fragment surface 

and their trajectory is such that the fluid flows around the fragment. Fluid flow simula-

tions around the fragment, using CFD software packages [7], show that the fluid 

output velocity on the exposed side of the fragment surface is tangential to the surface, 

indicating that the approach shown in Fig. 2 is a good representation in terms of mod-

elling. 

According to model [1], the final expression for the total aerodynamic force is: 

 

[ ]
1

1

ul vz ul izl

2

1 2
1

2

1 2
1

cos ( , ) d d

1

1

a

w

a

V x y y x

x
b

a

x
b

a

ϕ

ϕ
ρ γ

ϕ

ϕ

+

−−

+

−

  = − 
  

= + −

= − −

∫ ∫F V V

 (1) 

Here ρ is the density of the fragment material, Vul is the input velocity of the 

flow, Vizl is the output velocity of the flow, γvz is the angle between the velocity vector 

and the plane of the projected surface of the fragment (whereby these unit vectors are 

determined by the method explained in reference [6]), and a1, b1 are half‐axes of the 

ellipse defining a curve in the plane separating the exposed part (to the flow) of the 

fragment from the rest of the fragment [6]. The integration of expression (1) is per-

formed using the x and y coordinates in the plane of the projected fragment surface, 

where the integration boundary is defined by the ellipse half‐axes a1 and b1. 

Inlet velocity from expression (1) is equal to flow velocity: 

( )ul , ,x y zV V V= =V V , and Vizl is determined via the expression [1]: 

 izl ulV= B
V

B
 (2a) 

where Vul is magnitude of the inlet velocity and B is the vector defined as: 
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Here a, b, and c are the largest dimensions of fragment (approximated with triax-

ial ellipsoid) in three perpendicular directions. 
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Fig. 1 The surface of the body at which fluid 

flows with the velocity V 

Fig. 2 Elemental control volume  

analysis 

Regarding the introduction of compressibility in this model, as a first step specif-

ic work (per unit of mass) can be, generally, defined as:  
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Here p is the pressure, and vs is the specific gas volume.  

If in Eq. (3) the following thermodynamic equation is 
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Here the index 1 refers to the condition of the undisturbed flow and 2 to the state 

close to the surface of the fragment at relatively high velocities. 

Let us consider an elemental fluid mass in front of the fragment (in the control 

volume in the form of a cylinder, whose axis is in the direction of the velocity vector, 

Fig. 3), which is still in state 1: 

 tVALAm f ∆∆=∆∆=∆ ⊥⊥ 11 ρρ  (5) 

In Eq. (5) A⊥∆  is the element of fragment surface projected on a plane perpen-

dicular to the direction of the velocity vector of fragment centre of mass, ∆L is the 

elementary length of the fragment motion for the time increment ∆t, and ρ1 is the spe-

cific mass of undisturbed air ( )1
1 s1vρ −= . 

The work of the piston (see Fig. 3) in this case is: 
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Fig. 3 Analogy of an air compression 

Similarly the compression work, carried out on the elementary volume (in which 

the elementary mass of air ∆m is located) in front of the fragment is: 
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Now the total compression work on interval ∆t is: 

 

( ) ( )

( )

1 1 1 11 1s11
s2 s1 s2 s1

1
1 11 s1
s2 s1

d d
1 1

d
1

p p

p

t f f

A A

t f

A

p vC
W V t v v A V t v v A

p v
W V t v v A

χ
χ χ χ χ

χ
χ χ

ρρ
χ χ

χ

− − − −
∆

−
− −

∆

= ∆ − = ∆ −
− −

= ∆ −
−

∫ ∫

∫

 (8) 

The average power that corresponds to this compression at interval ∆t is: 
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On the other hand, the equivalent force that would produce this compression 

power is: 

 comp cor cor corf f fP F V F V= ⋅ = − =F V  (10) 

From Eqs (9) and (10), it follows for corrective force: 
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In Eq. (11) state 1 is a known state of undisturbed air (before the fragment is en-

countered), and Ap is the projection of the fragment surface on a plane perpendicular to 

the direction of the velocity vector of fragment centre of mass Vf. It should be noted 

here that vs1 and p1 are constants in relation to given integration over the surface, 

whereas vs2 varies as a function of spatial coordinates. It should also be noted that the 

pressures in this analysis are absolute pressures. 

If the equation of the adiabatic change of the gas state is used 1 2s1 s2p v p v
χ χ= , then: 
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Now Eq. (11) becomes: 
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This can be written as: 
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or in the following form: 
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In Eq. (15) p1 is the pressure of undisturbed air (p1 = p0 = 101 325 Pa, at tempera-

ture 15 °C), and p2 is the local variable pressure (in absolute amount) along the 

fragment surface. 

The total aerodynamic force (necessary for calculation of fragment trajectory) 

acting on the fragment is equal to the vector sum of force obtained on the basis of the 

basic aerodynamic force model [5], presented in expression Eq. (1), and corrective 

force obtained on the basis of the concept of loss of kinetic energy due to compression 

presented in expression Eq. (15). 



254 DOI 10.3849/aimt.01371

3. Validation of the Model  

The comparison of the results obtained by numerical simulation (using CFD software) 

and experimental data shows that this model of compressibility significantly reduces 

the relative error of aerodynamic force modelling in the relevant area of the relatively 

high velocity of the fragment, i.e. in the supersonic velocity range (when the compres-

sion of the air is significant).  

The model is first validated using aerodynamic force data obtained by numerical 

simulations of airflow around a triaxial ellipsoid, shown schematically in Fig. 4. 

Semi‐axes of an ellipsoid (Fig. 4) with which the validation of the model was per-

formed were as follows: a = 0.034 m, b = 0.00865 m and c = 0.006 m. These 

dimensions were selected in order for the results to be compared also with the results 

of aerodynamic force acting on irregularly shaped fragment. 

The method of numerical simulations of airflow around an ellipsoid consisted of 

the: digitalization of the body model, domain discretization (around 1,5 million cells), 

characterization of the resistive medium, initial and boundary conditions, solver and 

turbulence model selection, and aerodynamic force and moment components determi-

nation (postprocessor).  

The body was considered stationary and the flow around it was analysed. The ve-

locity vector was in the direction of axes z and y (separately, Fig. 4). The coordinate 

system was set in the body centre of mass. 

 

Fig. 4 Schematic representation of the ellipsoid with which validation of the aerody-

namic force model was performed 

Simulations of flow over the body for seven different velocities (1, 1.2, 1.3, 1.5, 

2, 3 and 4 Mach) were carried out. In numerical simulations, air is modelled as 

a homogeneous, isotropic, ideal gas. At the end of the domain, “Pressure Far‐field” 

condition was used, which is often used where the compressibility is significant. The 

“No‐Slip” condition is defined on the surface of the ellipsoid, which means that the 

relative flow velocity on the surface of the body is equal to zero. Boundary condition 

(“The Wall”) is generally used in the case when the viscous effects cannot be ignored 

and it is relevant to most fluid flow situations. A density‐based solver was selected for 

the simulations, where mass, flow, and energy equations are determined as the Na-

vier‐Stokes equation system in integral form for an arbitrary control volume. The 

Spalart‐Allmaras turbulence model was used in the simulations. This physical model 

of turbulence has been developed specifically for aerodynamic applications and has 

proven to be effective for the boundary layers with high‐pressure gradients, as well as 
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it has been very effective for transonic flows around the aero profiles, including flows 

with significant separation of the boundary layer.  

Tab. 1 shows the comparisons of the results for the aerodynamic force acting on 

the ellipsoid (Fig. 4) obtained by numeric simulations in Ansys Fluent with the results 

for force obtained using model described here. The results show that there is no signif-

icant deviation (rel. diff. of 10.9% to 13.8% for the flow in the direction of y axis, and 

from 0.4% to 10.6% for the flow in the direction of z axis). 

Tab. 1 Comparison of results for aerodynamic force acting on ellipsoid, obtained by 

numerical simulations and developed model  

 

Ellipsoid 

Airflow in direction of y‐axis Airflow in direction of z-axis 

velocity 

[Ma] 

F_model 

[N] 

F_sim 

[N] 

rel. diff. 

[%] 

F_model 

[N] 

F_sim 

[N] 

rel. diff. 

[%] 

1.0 58.38 64.88 11.14 108.26 97.86 10.62 

1.2 81.89 93.04 13.61 152.55 145.33 4.97 

1.3 94.86 107.93 13.79 177.12 171.10 3.52 

1.5 123.08 139.08 13.00 230.94 226.17 2.11 

2.0 206.29 228.84 10.93 391.62 389.92 0.44 

3.0 423.78 471.73 11.32 820.49 811.47 1.11 

4.0 707.68 803.91 13.60 1390.43 1420.22 2.14 

 

The model is then further validated using also the experimental data [8-10] for 

the drag coefficient CD of a sphere (Fig. 5). Sphere was used because it was easy to 

determine its projected surface area, and some experimental data were also available 

for sphere. The drag coefficients CD of a sphere as function of Mach number were 

determined using Eq. CD=F/qAp, where F is the aerodynamic force component in the 

direction of the velocity vector (drag force), q is the dynamic pressure (0.5ρV2) and Ap 

the projected surface of the sphere. The results show an excellent agreement between 

the results obtained using the model presented here and the experimental data. Relative 

differences between the experimental data and this force model which takes into ac-

count air compressibility were below 11%. The peaks of CD values in transonic zone 

show that shock waves are indirectly taken into account in the model presented here. 

Figs 6 and 7 show the pressure distribution on the ellipsoid (determined from the 

model described here) and from the results of numerical simulation (the flow over an 

ellipsoid in Ansys Fluent, for Mach number of 1.5). The static pressure shown in these 

figures is determined indirectly, based on the determination of the elemental aerody-

namic force over the surface of the model. The elemental aerodynamic force is 

obtained on the basis of the change in the amount of fluid momentum, and this value 

of force is corrected due to the compressibility (and consequently the shock wave) 

effects, on the basis of the energy equation or energy consumption on the compression 

of the local fluid near the surface of the body. This process is considered to be rela-

tively fast, so there is not enough time for heat transfer, and the adiabatic (isentropic) 

equation is used.  



256 DOI 10.3849/aimt.01371

 

Fig. 5 Comparison of experimental values [3-5] of drag coefficient CD for sphere with 

results obtained using aerodynamic force model presented here 

Fig. 6 shows that the pressure (obtained in the model presented here) is not con-

stant over the surface of the body, which is similar to the numerical simulation results 

(Fig. 7). Regarding the values of overpressure, results in Fig. 6 show that, for the re-

sults obtained from the model, the overpressure varies along the body from 0.5 bar up 

to values of around 3 bar. Numerical simulation results (Fig. 7) show that the over-

pressure on the body varies from around 0.2 bar up to maximal 2.9 bar. The most 

important values in these figures are the maximal overpressure values, and the relative 

difference between the maximal values from the model and simulation is around 3.5%. 

Similar results for maximal overpressure could be obtained by applying a 1D 

analytical normal shockwave model [11], where for 1.5 Mach flow velocity, the max-

imal overpressure behind the shockwave is around 2.5 bar. However, we should bear 

in mind that the analytical shockwave 1D model [11] cannot be adequately applied to 

the body, because the pressure would be identical all around the body (since the flow 

velocity is not changed along the body in the 1D model). As noted in reference [11], 

for a full shockwave solution of real problems, one has to use numerical simulation –

complete Navier‐Stokes equations, together with continuity equation, and energy 

equation (where compressibility is dominant). 

 

Fig. 6 Ellipsoid pressure distribution for 1.5 Mach (developed model, MatLab) 
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Fig. 7 Ellipsoid pressure distribution for M = 1.5 Mach (num. simulation, Fluent) 

Figs 8 and 9 also show a surface plot of pressure (MatLab) over ellipsoid, based 

on the developed model, for two instances of the flow (perpendicular to the longest 

axis and parallel to the longest axis of the body), for 1.5 Mach. The z axis in these 

figures represents the value of the overpressure. 

The underpressure zone behind the body was not taken into account in the model 

because it is assumed that the variations in pressure behind the fragment do not signif-

icantly affect the overall aerodynamic force acting on the body during the flight at 

relatively short distances for the following reasons: 

• this underpressure accounts for a small proportion of the total pressure distribu-

tion (underpressure/relative pressure behind the body may have values up to 

1 bar maximum, which is negligible comparing to the overpressure values at the 

frontal surface of the body – surface exposed to incoming flow (usually by an 

order of magnitude greater; i.e. at 3 Ma overpressure in front of the body is 

about 11 bar – so the maximum relative difference between these pressures is 

< 10%), 

• given that the total aerodynamic force is calculated, the consideration of this 

underpressure behind the body cannot significantly influence the total amount 

of aerodynamic force, as an integral of the elemental forces due to pressure, 

• also, when one is mostly interested in the movement of the body up to 50 m 

from the centre of the explosion (for lethal zone calculation), high velocities 

and aerodynamic forces occur, and the dominance of the front overpressures 

relative to the pressures behind the fragment remain. 

 

Fig. 8 Pressure plot over ellipsoid for flow perpendicular to longest axis (1.5 Mach) 
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Fig. 9 Pressure plot over ellipsoid for flow parallel to longest axis (1.5 Mach) 

4. Application of the Model to an Irregularly Shaped Body 

After the verification of the model, the results of the model for an estimation of aero-

dynamic force were compared with the results obtained by CFD numerical simulations 

for aerodynamic forces acting on an irregularly shaped fragment with jagged surface 

(Fig. 10). The methodology of numerical simulations for the fragment was similar as 

the ones used for an ellipsoid. Detailed explanations on the simulations can be found 

in the authors’ earlier papers [7, 12]. In this case the (numerical simulations) flow was 

directed towards positive and negative y and z axes (Fig. 10). 

 

Fig. 10 CAD model of the body with an irregular shape (i.e. HE projectile fragment) 

Tab. 2 shows the comparisons of the results for the aerodynamic force acting on 

the fragment (Fig. 10) obtained by numeric simulations with the results for force ob-

tained using the aerodynamic force model presented here (correction due to 

compressibility of air). 

The results in Tab. 2 show that there are no large deviations (relative difference 

of 5.3% to 23.6%) for the flow in the direction of z axis for this particular shape of the 

fragment (the flow towards the largest exposed area of fragment). In case of the flow 

towards the smaller exposed surface of the fragment (i.e. in the direction of the posi-

tive and negative y axis; Tab. 2, Fig. 10), the relative differences are somewhat larger 

(23.3%-59.6%). In addition, for different directions of the fluid flow, even in the same 

direction (same axis), the results may be significantly different (Tab. 2). It should be 
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noted that every possible fragment (even with the same general dimensions) will have 

slightly different values of these forces because of the stochastic nature of the natural 

fragmentation process. 

Tab. 2 Comparison of results for aerodynamic force acting on fragment, obtained by 

numerical simulations and developed model  

 

Fragment 

Airflow in direction of y axis Airflow in direction of z axis 

velocity 

[Ma] 

F_model 

[N] 

F_sim 

[N] 

rel. diff. 

[%] 

F_model 

[N] 

F_sim 

[N] 

rel. diff. 

[% 

1.0 58.38 82.33 41.02 108.26 113.95 5.25 

1.2 81.89 118.65 44.89 152.55 166.15 8.92 

1.3 94.86 138.30 45.79 177.12 194.48 9.80 

1.5 123.08 179.67 45.98 230.94 255.12 10.47 

2.0 206.29 302.30 46.54 391.62 432.21 10.37 

3.0 423.78 641.11 51.28 820.49 904.52 10.24 

4.0 707.68 1129.3 59.58 1390.40 1541.40 10.86 

 

velocity 

[Ma] 

Airflow in direction of −y axis Airflow in direction of −z axis 

F_model 

[N] 

F_sim 

[N] 

rel. diff. 

[%] 

F_model 

[N] 

F_sim 

[N] 

rel. diff. 

[%] 

1.0 58.38 71.98 23.30 108.26 120.09 10.94 

1.2 81.89 105.11 28.36 152.55 174.34 14.28 

1.3 94.86 123.31 29.99 177.12 204.83 15.65 

1.5 123.08 159.99 29.98 230.94 271.26 17.46 

2.0 206.29 265.27 28.59 391.62 462.37 18.07 

3.0 423.78 524.68 23.81 820.49 982.39 19.73 

4.0 707.68 890.58 25.85 1390.40 1718.30 23.58 
 

The results from the numerical simulations for real fragments were also com-

pared with the results of the aerodynamic force acting on fragment – determined using 

the “classical” model (F = 0.5ρACDV2) where force is determined via drag force coef-

ficient (to establish the order of errors), used by most authors. In this analysis, the 

fragment was approximated with rectangular parallelepiped (Fig. 11), as this approxi-

mation is frequently suggested by other authors. The largest projection of the exposed 

surface of the fragment was represented with Amax = ab (Fig. 11), the average projec-

tion of the exposed surface of the fragment is assumed Aaver = ac; smallest projection 

of the exposed surface of the fragment, in this case, is Amin = bc (Fig. 11). These pro-

jected surfaces were considered so the results can also be compared with the results 

obtained with the model presented here (shown in Tab. 2). Dimensions of the fragment 

were the same as in Fig. 10 (a = 34 mm, b = 8.65 mm, c = 6 mm). Air density was 

taken as standard value at sea level ρ = 1.225 kg/m3. 
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Fig. 11 Fragment approximated with a rectangular parallelepiped 

Due to the lack of more recent data, experimental values (CD_max, CD_aver) from 

the reference [8] were taken as approximate CD values for this fragment (see Fig. 12). 

It is assumed that the values of CD_max correspond to the case when the fragment was 

exposed to the flow with the largest surface projection (Amax, Fig. 11), and CD_aver for 

the case when the fragment was exposed to the flow with an average surface projec-

tion (Aaver, Fig. 11). 

 

Fig. 12 Experimental data for drag force coefficient CD for fragments [8] 

Tab. 3 presents the comparison of the results for the aerodynamic force acting on 

the fragment (from Fig. 11), obtained by numerical simulations and using the “classi-

cal” model (force determined via drag force coefficient), for two directions of the flow 

(towards positive/negative y and z axis, Fig. 11). 

Relative differences between the results for aerodynamic force obtained by the 

“classical” approach and numerical simulation (for a fragment) for the flows towards 

the y axis were from 192.8% to 386.3% and for the flow towards the z axis from 
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128.5% to 206.5% (Tab. 3). These errors can be larger or smaller depending on the 

adopted CD values, as well as the adopted values of the reference area (i.e. projected 

area of a body – projection of an exposed area of a body onto the plane perpendicular 

to velocity vector [2]). 

As it can be seen, using the “classical” approach for the determination of aerody-

namic force acting on a fragment can give significantly larger errors (192%-386%) 

than using physical model presented here (where rel. differences were < 60%), which 

can lead to erroneous (less accurate) results for fragment trajectory. 

Tab. 3 Comparison of results for force acting on fragment, obtained by “classical” 

model (force determined via drag force coefficient) and numerical simulations  

 

Fragment 

Airflow in direction of y axis Airflow in direction of z axis 

velocity 

[Ma] 

F_classical 

model [N] 

F_sim 

[N] 

rel. diff. 

[%] 

F_classical 

model [N] 

F_sim 

[N] 

rel. diff. 

[%] 

1.0 16.93 82.33 386.29 39.18 113.95 190.83 

1.2 27.77 118.65 327.25 60.43 166.15 174.94 

1.3 34.27 138.31 303.55 73.57 194.48 164.34 

1.5 49.41 179.67 263.70 104.33 255.12 144.53 

2.0 82.52 302.31 266.33 176.01 432.21 145.57 

3.0 171.26 641.11 274.34 379.66 904.52 138.24 

4.0 304.14 1129.3 271.30 674.47 1541.46 128.54 

 

velocity 

[Ma] 

Airflow in direction of −y axis Airflow in direction of −z axis 

F_classical 

model [N] 

F_sim 

[N] 

rel. diff. 

[%] 

F_classical 

model [N] 

F_sim 

[N] 

rel. diff. 

[%] 

1.0 16.93 71.98 325.16 39.18 120.09 206.50 

1.2 27.77 105.11 278.50 60.43 174.34 188.49 

1.3 34.27 123.31 259.81 73.57 204.83 178.41 

1.5 49.41 159.99 223.86 104.33 271.26 160.00 

2.0 82.52 265.27 221.46 176.01 462.37 162.71 

3.0 171.26 524.68 206.36 379.66 982.39 158.75 

4.0 304.14 890.58 192.81 674.47 1718.36 154.77 
 

Overall, given that model presented here significantly optimizes the processing 

and duration of the calculation, and given the simplicity of the model, the results are 

satisfactory. A significant advantage of the model presented here, compared to the 

classic approach, is the possibility of generalization by identifying certain parameters 

of the fragment (a, b, c semiaxes of a triaxial ellipsoid, or geometric relations a/b, a/c), 

and the generalization of on arbitrary fragment, which cannot be done through 

a classic approach using numerical simulations (Navier‐Stokes equations in full form), 

regardless of their greater accuracy.  
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The developed model for assessing aerodynamic force and moment can be used, 

together with a developed model for estimating the projected surface of the fragment, 

to predict the elements of the trajectory of the fragments.  

5. Conclusion 

The model of compressibility was developed and applied to a generalized model for 

prediction of aerodynamic forces acting on the irregularly shaped body (such as prima-

ry fragments of naturally fragmenting high‐explosive warheads, secondary projectile 

debris, fragments made from structures when strong tornadoes are formed, or any body 

with an irregular shape).  

Changing the gas state at the compression of air in front of the fragment, formed 

immediately after the disintegration of a HE projectile, is assumed to be adiabatic, 

since the air compression process during the motion of the fragment is an extremely 

fast process (relative to the heat transfer process).  

The equation of the state of the ideal gas is adopted, although it is possible to 

adopt some of the models of the real gas and carry out the same analysis.  

Analysis of results and comparison with results obtained by simulation (using 

CFD software) and experiments show that this model significantly reduces the relative 

error of aerodynamic force modelling in the relevant area of the high velocity of the 

fragment, i.e. in the supersonic velocity range when the compression is particularly 

significant in the air. 

This compression model, together with the authors’ previous work can be used in 

a generalized 6DOF model for the estimation of all relevant kinematic parameters 

(trajectory, velocities, orientation) of an irregularly shaped body.  
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