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Abstract:

The security of the information transmitted, irrespective of the era and the channel selected,
has always been one of the main concerns of those using various communication systems. This
is particularly the case nowadays, when the Internet has made the mass distribution of any kind
of information possible. Codes can be used to transmit data through various noisy channels
and any errors that might occur can be corrected; it is therefore very important to design
gappropriate codes with adequate parameters. This survey briefly outlines the evolution of the
ways in which information has been collected, transmitted and used from the past to the present.
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1 Introduction

In the text that follows, we intend to cast a backward glance and draw a brief comparison
between the ways in which information was collected, transmitted and used in the past and
those employed in the present.

Information security has gone through a variety of stages, from the simple process of
encrypting and decrypting information and delivering it through an emissary, which can be
regarded as the first channel of communication, to the elaborate attempts to persuade the person
holding the information to reveal it. Even though some information may hold no actual value to
its custodian, it can easily gain considerable importance if it falls in the hands of people that can
use it to their advantage, for personal gain. It is generally quite easy to get hold of someone’s
personal data, without the person in question experiencing any sense of loss. However, the
collected personal data of several people can be of value to a marketing agency, for instance
see [1].

An entire field, known as social engineering, has thus emerged. This field concerns itself
with obtaining information or gaining access to various secured systems, manipulating those

∗Corresponding author: Department of Mathematics and Physics, Faculty of Military Technology, University of
Defence, Kounicova 65, 662 10, Brno, Czech Republic. Phone: +420 973 44 22 25, E-mail: sarka.mayerova@unob.cz.



80 C. Flaut, D. Flaut, S. Hoskova-Mayerova and R. Vasile

who own them or have legitimate access to them by means of various fraudulent or legal strate-
gies. The main aim pursued in this field entails gaining the confidence of the chosen targets
in order to make them disclose important information or to grant access to the secured system
that needs to be breached. Such strategies rely on various psychological factors (naivety, vanity,
irresponsibility, greed), as well as on a range of ways of drawing attention away from important
issues or taking advantage of human automatisms. This is why social engineering strategies
are employed with increasing frequency in the fiercely competitive present-day market [2]. The
aspects outlined below, to do with collecting and using apparently trivial information, are only
new in terms of the strategies involved and the levels where they are applied. In fact, the ideas
on which such actions are based are extremely old, it is only the shape they take and the modus
operandi that are new.

In the text that follows, we intend to cast a backward glance and draw a brief comparison
between the ways in which information was collected, transmitted and used in the past and
those employed in the present.

2 Some Historical Aspects

In the past, information was sometimes transmitted by means of people functioning as com-
munication channels, delivering usually encrypted messages to their destination. In addition,
they were also in charge of collecting information which, in turn, was transmitted back to the
people employing them. For instance, they would stop at an inn and strike up a conversation
with the innkeeper or patrons, thus becoming aware of a wide range of issues.

Various types of ciphers were used to encode the messages transmitted. For a long period
of time, use was made of the so-called classical ciphers or mono-alphabetic ciphers, comprising
two varieties: transposition and substitution.

Transposition entailed a mere rearrangement of the letters, which was quite difficult to
use, especially when the messages were decoded. The Spartan scytale was the earliest such
means of rearranging letters. It consisted of a piece of wood of a certain length and thickness,
which represented in fact the encoding and decoding key, with a strip of leather wound around
it on which the message was written. The unwound strip of leather contained the mixed-up
message. The recipient had an identical scytale, around which he could wind the strip of leather
in order to read the text to be transmitted [3, p. 12].

Substitution represented another variety of mono-alphabetic cipher in which every letter
was replaced with another one, according to a pre-established rule, which represented in fact
both the encrypting and the decrypting key. One such cipher was Caesar’s Cipher, in which
each letter was replaced with a letter three positions down the alphabet [4, p. 48–69]. A problem
posed by these ciphers was that they were easy to break by means of certain statistical data to do
with the text transmitted, that is by applying a so-called frequency analysis to the letters in the
text. After the discovery of this method, credited to the Arab mathematician Al-Kindi in the 9th
century, many of the encryption methods previously used became vulnerable, the ciphers being
easy to crack, see [5], [3, p. 22]. This becamemore of a challenge when poly-alphabetic ciphers
appeared, presumably introduced by Leon Battista Alberti around 1467. These new codes
used distinct mono-alphabetic ciphers for different parts of the message transmitted. A simple
variety of poly-alphabetic substitution is the Vigenère cipher, which seems to have been known
long before its first appearance in print. In 1586, Blaise de Vigenère published A Treatise on
Secret Writing in which he described this cipher [6, p. 35–37].

A famous instance in which the use of a specific cipher played an important part was
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the case of Mary, Queen of Scots, who was involved in an assassination plot targeting Queen
Elizabeth I. The letters in which she outlined this plot were encrypted by means of an ostensibly
unbreakable cipher, an improvement on the mono-alphabetic cipher with symbols arranged in
a nomenclator. This cipher eventually turned out to be easy to crack, and Mary Stuart was
brought to trial and sentenced to death by beheading on 8 February 1587 [7].

The idea of adding the key to the text, the technique entailed by the Vigenère cipher,
had been known for a long time, but it would appear that Vigenère was the first to make it
public. At the time, few institutions allowed the study of encrypted texts, monasteries being
among them [3, p. 31]. This is the reason why there are many known instances in which this
encoding method was employed not only in diplomacy but also in certain church books, such as
the London Gospel transcribed by Radu of Măniceşti in 1574. This encoding method was also
used in the case of certain encrypted inscriptions found on the walls of HumorMonastery in the
north of Moldavia, Romania [8]. In this encoded text, the Cyrillic letter H corresponded to the
letter group DD. Indeed, if we label the letters of the Cyrillic alphabet, the letterD corresponds
to 4, andH to 8. Therefore, the letterH can be encoded as the sum of letter labelsD andD,
that isDD = 4 + 4 = 8 = H [5], [9, p. 376–378].

In brief, the Vigenère cipher used as its key a word of certain length associated with
a number obtained from the labels attached to the letters making up the key. In actual fact, the
Vigenère cipher is a series of texts encoded by means of the Caesar Cipher and different keys
provided by the letter labels of the key word. If one knows the length of the key used to encode
the text, the latter can be decoded. It can be noted that if we were to know the length L of
the key, the rest would be a matter of analysing L texts encoded with Caesar ciphers entailing
different keys.

The Vigenère cipher was considered unbreakable for a long time. It was eventually
cracked by Charles Babbage in 1854 as well as by Friedrich Kasiski in 1863. The technique
used for this purpose was put forward by both Babbage and Kasiski, independently of one
another, but for unknown reasons Babbage never published it, see e.g. [3, p. 73], [10]; [11,
p. 196].

In 1837 Charles Babbage became the first person to design a programmable calculating
machine, the Analytical Engine, which can be regarded as a precursor of modern computers.
However, due to the technical limitations of the period, this machine could not be built at the
time. In 1843 Ada Lovelace wrote an algorithm that could be processed by this machine, mak-
ing history as the world’s first programmer [12].

As mentioned above, finding out the length of the key used to encrypt a text by means of
the Vigenère cipher allows the text to be decrypted. One of the methods employed to discover
the length of the key is the Kasiski examination, which he came up with in 1863. In order to
determine the length of the key, one needs to count the occurrences of the letters that match
when the encrypted text is compared against the actual text, displaced by a certain number of
positions, which can provide the possible length of the key. The distance must be determined
for every such pair. The value of lengthL of the key is going to be the greatest common divisor
or a divisor of the latter. After establishing the length of the key, letter frequency analysis is
conducted on a text in the L subtexts, S1, S2, . . . , SL determined as follows: S1 consists of
the letters from the encrypted text located at 1, L + 1, 2L + 1, etc. S2 consists of the letters
from the encrypted text located at 2, L+ 2, 2L+ 2, . . . and so on [13, p. 45–100], [14, p. 36].

Another way of finding out the length of the encryption key, established by Wolfe Fried-
man in 1920, employs the index of coincidence I . If we have a sequence of m characters,
the probability of finding out that two arbitrarily selected characters are identical is known as
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index of coincidence. If letters A,B,C, . . . ., Z appear in the length m de m0,m1,..., m25

times respectively, so that

m = m0 +m1 + ....+m25, (1)

then the index of coincidence is

I =
m0 (m0 − 1) +m1 (m1 − 1) + ...+m25 (m25 − 1)

m (m− 1)
, (2)

and the key length is probabilistically determined and is approximately

L ≈ 0.027m

(0.065− I) +m(I − 0.0385)
. (3)

More details can be found in [15], [14, p. 36].
The appearance of the electrical telegraph built by Alfred Vail and Samuel Morse in

1844, as well as the first radio transmission conducted in 1894 by Guglielmo Marconi, who
employed his own equipment, made it possible to deliver information by means of these new
methods much faster and more efficiently than by sending an emissary [16, 17].

In an endeavour to make it easier to encrypt and decrypt secret messages, the German
inventor Arthur Scherbius built an electromagnetic machine initially used for commercial pur-
poses, named the Enigma machine. During World War Two, the Enigma was consistently used
to encrypt messages. The machine had a keyboard, a lamp panel and a set of rotors. The key-
board was used to enter the plain, non-encrypted text, which resulted in encrypted symbols at
the level of the lamp panel, via the rotors. The movement of the rotors was meant to apply
a different key when the keyboard was touched [3, p. 105].

One of the mathematicians to point out the shortcomings of the Enigma machine during
WorldWar Two was Alan Turing. He joined the code breakers of Bletchley Park, an estate from
the town of Bletchley and the headquarters of the cryptanalysts that succeeded in cracking the
Enigma machine codes. Alan Turing created the Turing machine, which can be considered one
of the ancestors of present-day computers [18].

The appearance of the Internet in 1969 revolutionised means of communication. The In-
ternet (short for interconnected networks) is a global network developed by connecting several
computer networks from around the world by means of specific communication rules known as
Protocols. The Internet started as an experimental project run by an agency within the United
States Department of Defense. This project, initially called ARPANet, connected computers
from the University of California, Los Angeles to those belonging to the Stanford Research
Institute [19]. The ARPANet project also played a major role in the emergence of the email
service. In 1971, Ray Tomlinson, a Geneva physicist, set up an electronic mail (email) system
based on the ARPANet network, choosing the@ symbol to send messages from one computer
to another [20].

Over the last few years, wireless networks have evolved considerably worldwide. The
technology used in the case ofwireless communication can connect various pieces of equipment
notwithstanding the distance between them. The widespread use of these networks led to the
development of new technologies which can provide their users with quality services, such as
extremely fast communication, as well as safety through new ways of increasing transmission
security.
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3 Some Mathematical Aspects

As seen above, these means of communication, whether new or old, are based on various math-
ematical notions: encrypting and decrypting algorithms, mathematical items employed in the
construction of advanced codes used to transmit information, etc. It can therefore be argued
that Mathematics played an important part in the development of these fields.

3.1 The RSA-Cryptosystem

Invented in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman, RSA is one of the best
known public key cryptosystems and it is based on the difficulty of factoring big numbers.

Choosing two very large prime numbers, with more than 100 digits each, we consider
n = pq. Computing Euler’s totient function for the natural number n, we obtain

ϕ (n) = (p− 1) (q − 1) . (4)

We randomly choose an integer e between 1 andϕ (n) such that e andϕ (n) are coprime.
We consider {n, e} the public key. Since gcd[e, ϕ (n)] = 1, we can find the inverse modulo
ϕ (n) , denoted by d. It is clear that ed = 1 mod ϕ (n). The number d will be the secret key.
Supposing that the plain text ism,m < n, we have the encryption function

c = memodn. (5)

The decryption function is
m = cdmodn. (6)

For more details see [21, p. 83–96].
It is clear that if we know the exponent e, finding the decryption key d is equivalent to the

factorization of the number n. For n as a large integer, such a thing is practically impossible.
Since there are factorizing tests, such as for example ”rho”–test, Pollard’s p − 1 method, the
Lenstra elliptic-curve factorization method or the Number Field Sieve test, which can factorize
large numbers, some precautions are necessary when choosing the numbers p, q and e. We
have to note that the prime numbers p and q must be chosen in such a way that p− 1 and q− 1
have a large prime factor and are not too close to one another. The integer e must be chosen in
such a way so as not to be too small and n must have a minimum of 1024-bits [14, p. 43–50,
p. 52–53], [22].

3.2 DES and AES Cryptosystems

DES (Data Encryption Standard) is a symmetric cryptosystem used from 1976 until 2001 as
the international encryption standard. Since DES was considered unsafe due to the short length
of the key, in 2001 it was replaced with AES (Advanced Encryption Standard), a block cipher
which usesZ2 as its alphabet. Starting from this year, AES is intensively used around the world
as the encryption standard [23, p. 127–136, p. 139–148].

4 Codes

Codes can be used to transmit data through various noisy channels and any errors that might
occur can be corrected; it is therefore very important to design good codes with adequate pa-
rameters. Some examples of such codes are provided below.
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The Hamming codes can detect two errors and correct one error. These codes are used
when errors are rare, as is the case for example with the computer memory system (RAM) [24].

The Golay codes were discovered by M. J. E. Golay in 1949. These codes are linear error
correcting codes used in digital communications. For example, these codes were used in 1977
for encoding and decoding the data for the Voyager space missions [25], [26, p. 88].

The Reed–Muller codes discovered in 1954 by D.E. Muller are error-correcting codes
used particularly in space communications. They were used by the NASA space probe Mariner
9 to transmit black and white pictures from Mars to Earth in 1972 [26, p. 118], [27].

4.1 Space Time Block Codes

Quaternions were discovered in 1843 by Sir William Rowan Hamilton and have many applica-
tions, one of which is in Coding Theory [28]. We consider the real quaternion algebra H with
basis {1, i, j, k}, where

i2 = j2 = k2 = −1, ij = −ji, ik = −ki, jk = −kj, (7)

each element in H takes the form q = a+ bi+ cj + dk, a, b, c, d ∈ R.
If we consider an arbitrary field K, with charK 6= 2, and the elements α, β ∈ K, the

generalized quaternion algebra H(α, β) =
(
α,β
K

)
is a four dimensional algebra with basis

{1, f1, f2, f3}, and the multiplication given in the following Tab. 1.

Tab. 1. Multiplication table

· 1 f1 f2 f3

1 1 f1 f2 f3
f1 f1 α f3 αf2
f2 f2 −f3 β −βf1
f3 f3 −αf2 βf1 −αβ

If a ∈ H(α, β), a = a0 + a1f1 + a2f2 + a3f3, we define

t (a) = a+ a ∈ K, (8)

and
n (a) = aa = a20 − αa21 − βa22 + αβa23 ∈ K, (9)

called the trace and the norm of the element a ∈ H(α, β).
If for x ∈ H(α, β), the relation n (x) = 0 implies x = 0, therefore the algebraH(α, β)

is called a division algebra. Otherwise, it is called a split algebra. We observe that the algebra
H (−1,−1) =

(−1,−1
R

)
is a division algebra. For details regarding quaternions, readers are

referred to [29].
A block code is an error-correcting code which encodes data in blocks. Space-Time Block

Codes are used in wireless communications systems with multiple antennas, ensuring the high
reliability of the transmission. Due to their properties, complex numbers and division quater-
nion algebras were used to build Space Time Block Codes. The Alamouti code, designed in
1998, is one such example [30]. The code is given by the following set
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C =
{(

z1 −z2
z2 z1

)
| z1, z2 ∈ C

}
, (10)

where z1, z2 are two complex numbers which represent information symbols.
For Z, Y ∈ C, we note that

det (Z − Y ) = |z1 − y1|2 + |z2 − y2|2 ≥ 0. (11)

This property is called full diversity. From the operations above, it follows that code C can be
given as the left representation of H over C

λ : H→M2 (C) , λ (q) =
(
z1 −z2
z2 z1

)
, (12)

where q = z1+z2j. ForZ =

(
z1 −z2
z2 z1

)
, we have detZ = n (q) and n (q) = 0 implies

q = 0. Therefore, the full diversity property is equivalent to the division property of the algebra
H, see [31, 32, 33].

5 Codes and BCK–algebras

Certain algebraic structures have lately been associated to various types of codes. A question
to ask in this respect is: Who influences whom? Is it the case that the properties of algebraic
structures can lead to the elaboration of good codes, or that the attached codes can lead to the
discovery of new and interesting properties of these algebraic structures?

LetX be a nonempty set, ”∗” be a binary relation defined onX and θ ∈ X be a constant
element. The pair (X, ∗, θ) is called a set of (2, 0) type.

A set (X, ∗, θ) of (2, 0) type is called a BCI algebra if the following condition are satis-
fied:

1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = θ, for all x, y, z ∈ X;
2) (x ∗ (x ∗ y)) ∗ y = θ, for all x, y ∈ X;
3) x ∗ x = θ, for each x ∈ X;
4) For each x, y, z ∈ X such that x ∗ y = θ, y ∗ x = θ, we obtain x = y.

If a BCI algebraX satisfies the following relation:
5) θ ∗x = θ, for each x ∈ X, thereforeX is called a BCK algebra. These algebras were

introduced for the first time in 1966 by Y. Imai and K. Iseki in [34].
One of the recent applications of BCK-algebras was given in the Coding Theory. In the

paper [35], the authors constructed a finite binary block-code associated to a finite BCK-algebra.
At the end of the paper, they raised the question of whether the converse of this statement was
also true. In [36] an answer was given to this question: under some circumstances, the converse
is also true. Therefore we can associate a finite BCK algebra to a finite binary block code. The
algorithm developed here can be extended to other algebraic structures.

6 Conclusions

The security of the information transmitted, irrespective of the era and the channel selected,
has always been one of the main concerns of those using various communication systems. This
is particularly the case nowadays, when the Internet has made the mass distribution of any kind
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of information possible. Mathematics has played an important part in this endeavour through
the various algorithms elaborated to enable communication, via both old and modern means.
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