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Abstract: 

The application of nonlinear material models of concrete within numerical simulations 

focused on the design of safer and more economical protective concrete structures is 

currently the subject of investigation of many scientific researchers. However, one basic 

problem related to the nonlinear modelling of concrete is that very often there is a lack 

of knowledge about the material model parameters whose values must be defined. The 

solution to this problem can be in what is termed as inverse parameter identification, an 

approach which is presented in this paper. Specifically, the material parameters of the 

Continuous Surface Cap Model for concrete are identified within this paper using opti-

misation algorithms. The subsequent comparison of parameter identification results with 

experimental data shows the efficiency of the presented approach. 
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1. Introduction 

Complex nonlinear material models of concrete implemented in sophisticated compu-

ting systems based primarily on the implicit or explicit finite element method [1-3] are 

currently the most powerful tools enabling the modelling of the real nonlinear behav-

iour of concrete within static and dynamic numerical simulations [4-11]. Such 

simulations can be focused on the design of safer and more economical protective and 

military concrete structures. However, the application of nonlinear material models of 

concrete within continuum mechanics tasks causes some problems which might arise 

and with which the designer must somehow cope. The most fundamental and largest 
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problem for designers is very often their lack of knowledge regarding the theoretical 

background of the material models and associated lack of knowledge about the materi-

al model constants (parameters) whose values have to be, of course, defined before 

nonlinear numerical analyses may be performed. It is quite common that in order to 

ensure that the most complex material models function properly, one first needs to 

define the values of many parameters whose ascertainment very often requires differ-

ent specific experimental data and whose meanings and ranges are often known only 

to the authors of the material models themselves. The definition of the values of the 

parameters of nonlinear concrete material models is not, therefore, a simple task. One 

of the current options for dealing with this problem is to use optimisation algorithms in 

the inverse parameter identification of nonlinear material models intended, inter alia, 

for concrete modelling [12-14]. 

The inverse parameter identification of nonlinear material models is performed to 

find such material parameter values for which the response obtained from a numerical 

simulation will best approximate the data obtained from experimental measurements. 

It can be seen from the previous sentence that an interaction of experimental data, 

numerical simulations and identification methods is necessary for inverse parameter 

identification. A very powerful current identification/optimisation tool is the 

optiSLang programme [15], which includes a variety of optimisation algorithms that 

can be used for material parameter identification. 

This paper presents a typical identification task and it specifically focuses on the 

identification of the parameters of a nonlinear material model of concrete, the Contin-

uous Surface Cap Model. This model is implemented in an explicit finite element 

solver, LS-Dyna [16]. For the purpose of the material parameter identification per-

formed in this paper, use is made of experimental data obtained from the evaluation of 

direct tensile test results, optimisation algorithms incorporated in the optiSLang pro-

gramme, and nonlinear numerical simulations performed using LS-Dyna software. 

2. Modelling of Concrete 

Within this paper, concrete was modelled via a nonlinear material model known as the 

Continuous Surface Cap Model [17, 18]. This model can be found in the library of 

material models implemented in LS-Dyna software. 

The Continuous Surface Cap Model is based on a yield surface which is defined 

as a function of three stress invariants according to the following equation [19, 20]: 

 ( ) ( ) ( ) ( )2 2
1 2 3 2 3 1 1, , ,f cY I J J J J F I F I κ= − ℜ , (1) 

where I1 is the first invariant of the stress tensor, J2 and J3 are the second and third 

invariants of the deviatoric stress tensor, ℜ(J3) is the Rubin strength reduction factor 

and κ is the cap hardening parameter. The yield surface is composed of two parts, 

these being the hardening compaction function Fc(I1,κ) and the shear failure function 

Ff (I1). 

The mathematical expression of the hardening compaction function is given by 

the following equations: 
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with the equations: 

 ( )L κ κ=  for 0κ κ> , (4) 

 ( ) 0L κ κ=  for 0κ κ≤ , (5) 

 ( ) ( ) ( )1fX L RF Iκ κ= + , (6) 

where R is the cap aspect ratio. The shear failure function is defined by the equation: 
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where α, β, λ, and θ are material constants usually determined on the basis of triaxial 

compression tests. Within the yield surface, the shear failure function and hardening 

compaction function are combined using a multiplicative formulation which allows 

their combination to be continuous and smooth at their intersection. 

Tab. 1 Parameters of the Continuous Surface Cap Model designed for identification 

Parameter Parameter description Unit 

RO Mass density, ρ Mg/mm3 

G Shear modulus, G MPa 

K Bulk modulus, K MPa 

ALPHA Triaxial compression surface constant term, α MPa 

THETA Triaxial compression surface linear term, θ — 

LAMDA Triaxial compression surface nonlinear term, λ MPa 

BETA Triaxial compression surface exponent, β MPa−1 

ALPHA1 Torsion surface constant term, α1 — 

THETA1 Torsion surface linear term, θ1 MPa−1 

LAMDA1 Torsion surface nonlinear term, λ1 — 

BETA1 Torsion surface exponent, β1 MPa−1 

ALPHA2 Triaxial extension surface constant term, α2 — 

THETA2 Triaxial extension surface linear term, θ2 MPa−1 

LAMDA2 Triaxial extension surface nonlinear term, λ2 — 

BETA2 Triaxial extension surface exponent, β2 MPa−1 

R Cap aspect ratio, R — 

X0 Cap initial location, X0 MPa 

W Maximum plastic volume compaction, W — 

D1 Linear shape parameter, D1 MPa 

D2 Quadratic shape parameter, D2 MPa2 

B Ductile shape softening parameter, B — 

GFC Fracture energy in uniaxial stress, Gfc mJ/m2 

D Brittle shape softening parameter, D — 

GFT Fracture energy in uniaxial tension, Gft mJ/m2 

GFS Fracture energy in pure shear stress, Gfs mJ/m2 
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Within its formulation, the model allows the effect of strain rate on the resulting 

stress state to be taken into account. However, this capability of the model can be 

neglected within the computations by appropriate setting of the model parameter 

IRATE (IRATE = 0: Rate effects turned off; IRATE = 1: Rate effects turned on). If the 

parameter IRATE is equal to zero, the response of the model is static, independent of 

loading rate. It follows that the Continuous Surface Cap Model can be used in dynamic 

(but also quasi-static or static) numerical simulations. The parameter IRATE equal to 

zero has been used within this study / research, so the response of the model was al-

ways static. It is also important to mention that the model includes an algorithm for 

limiting the dependence of results on the size of the finite element mesh. 

The Continuous Surface Cap Model is implemented in LS-Dyna software in two 

versions, specifically the *MAT_CSCM version and the *MAT_CSCM_CONCRETE 

version [16]. The general *MAT_CSCM version of the material model was used with-

in this study / research because this model version contains a lot of parameters and is 

therefore suitable for identification purposes. A total of 25 parameters (material con-

stants) of the *MAT_CSCM version were identified in order to obtain the most 

realistic response from the model, i.e. a response that is as close as possible to that 

described by experimental data. Descriptions of the identified parameters are provided 

in Tab. 1 [16] along with the units used. The material model version 

*MAT_CSCM_CONCRETE was not used in the identification task performed within 

this study / research because this version requires the definition of only 3 parameters 

(mass density, the uniaxial compressive strength and the maximum aggregate size), 

based on which the other parameters are automatically generated. As a result, the post-

peak response in particular of this model version can only be influenced very slightly. 

However, the results of the *MAT_CSCM_CONCRETE version were used for com-

parative purposes. 

3. Experimental Data 

For the parameter identification performed, use was made of experimental data ob-

tained from the evaluation of direct tensile test results presented in [21]. Direct tensile 

test is one of possible tests which are used for investigation of tensile behaviour of 

plain concrete. The experimental data were represented by a force-extension curve 

which characterised the nonlinear behaviour of plain concrete test specimens during 

direct tensile loading (see Fig. 1). 

According to [21], the dimensions of the plain concrete test specimens used dur-

ing the tests were 305 mm × 60 mm × 19 mm (length × width × depth for the critical 

cross-sectional area). The experimental data were measured from an 85 mm gauge 

length of each test specimen. The 28 days uniaxial compressive strength of the used 

concrete was 44 MPa. The size of aggregate varied, however, the maximum aggregate 

size was 10 mm. During the direct tensile loading, concrete test specimens were 

stretched at a constant loading velocity. Loading was slow, so the response of test 

specimens was static. 

Fig. 1 shows the typical behaviour of plain concrete in direct tension. The graph 

depicts the linearly elastic behaviour of the concrete before it reaches the ultimate 

uniaxial tensile strength with subsequent nonlinear tensile softening. 
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Fig. 1 Experimental data 

4. Nonlinear Numerical Simulations 

Within this paper, nonlinear numerical simulations were performed in the LS-Dyna 

software based on the explicit finite element method. Settings for the calculation, 

computational model and parameter values of the material model were always entered 

into the LS-Dyna input file which, together with experimental data, formed the input 

data for the optiSLang programme used for parameter identification. 

 

Fig. 2 The finite element model of the measured region of the test specimen 

The computational model used for this test was simplified in comparison with re-

al direct tensile tests. Experimental data were only measured on the aforementioned 

85 mm long region of the test specimen. This means that the extension in Fig. 1 corre-

sponds to the extension of that 85 mm long region and the tensile force corresponds to 

the tensile force needed to obtain the given extension of that region. This is why it was 

the only part of the test specimen that was modelled. Explicit 3-D structural finite 

elements were used for the modelling. The geometric model was discretised by a regu-

lar mesh of finite elements. The size of the finite elements has been chosen so that the 

length of the time step in explicit algorithm was not too small. This had resulted in 

a reasonable calculation time and, therefore, the task could be solved as a whole with-

out the use of symmetry. In terms of boundary conditions, linearly increased 
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displacements over time in the X-axis direction were prescribed for the nodes of both 

finite element model bases. These displacements were applied so that tensile loading 

could be imposed at a constant velocity. Explicit finite element algorithm allowed to 

solve the given task without supports while maintaining computational stability. This 

was taken into account and no supports were applied to the finite element model. This 

enabled the proper transverse shortening of the model due to Poisson’s ratio. The finite 

element model of the measured region of the test specimen is shown in Fig. 2. 

5. Parameter Identification Process 

The whole process of parameter identification was performed via the optiSLang pro-

gramme and consisted of three parts: 

1. Sensitivity analysis 

2. Global optimisation 

3. Local optimisation 

5.1. Sensitivity Analysis 

Within this first part of the whole parameter identification process, the sensitivity of 

identified material parameters to the defined reference response was analysed. The 

reference response was represented by individual points which defined the shape of 

the used force-extension curve. The main aim of the sensitivity analysis [22, 23] was 

to determine the minimum scope of the design vector which contained the identified 

material parameters. Another aim was to modify the range of variability for the indi-

vidual material parameters contained in the design vector. Boundary values of the 

initial range of variability for each identified parameter were obtained on the basis of 

test calculations. 

The Advanced Latin Hypercube Sampling (ALHS) method [24] was used to per-

form the sensitivity analysis. A total of 250 random realisations of the design vector 

were generated through this method. The number of random realisations covered the 

given design space sufficiently. However, the first realisation corresponded to random-

ly user-selected parameter values, for which the force-extension curve is illustrated in 

Fig. 3 together with the experimental data for comparison. The parameter values used 

for the first realisation respected the initial ranges of variability for individual identi-

fied parameters. 

The results obtained via the ALHS method showed that only 9 out of a total of 25 

identified material parameters significantly affected the resultant shape of the numeri-

cally-simulated force-extension curve. The influence of parameters on the force-

extension curve was indicated by the Relative Frequencies of Importance (RFI), which 

were nonzero for significant material parameters (see Tab. 2). For the subsequent 

global optimisation, the original design vector which contained all identified material 

parameters given in Tab. 1 was reduced to a design vector, which only contained the 

aforementioned 9 parameters that significantly affected the resultant shape of the 

numerically-simulated force-extension curve. Specifically, the reduced design vector 

had the following form: 

 { }T
, , , , , , 0, ,G K ALPHA THETA LAMDA BETA X D GFT=REDX . (8) 

The values of the pre-optimised material parameters and objective function 

(OBJ_FUNC) obtained from the best random realisation generated by the ALHS 

method are presented in Tab. 2. 
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Fig. 3 Initial force-extension curve 

5.2. Global Optimisation 

Within this second part of the whole parameter identification process, optimised mate-

rial parameter values were sought that would enable the numerical simulation result to 

approximate the experimental data very well. In other words, optimised material pa-

rameter values were sought that would minimise the value of the objective function. 

The global optimisation process was therefore based on minimising the objective 

function [15]. The objective function used within this paper can be formulated by the 

following equation: 

 ( )2

, ,

1

_ min
n

sim i ref i

i

OBJ FUNC y y
=

= − →∑ , (9) 

where ysim,i are the force values obtained from the appropriate numerically-simulated 

force-extension curve at the given displacements and yref,i are the force values obtained 

from the used experimentally-measured force-extension curve at the same displace-

ments. 

As already mentioned, global optimisation only involved those material parame-

ters which were included in the reduced design vector. Other parameters were defined 

by constant values (deterministically) from their modified ranges of variability. For the 

purposes of global parameter optimisation, an optimisation algorithm generally known 

as an Evolutionary Algorithm (EA) [15] was used. An EA is one of the optimisation 

approaches which exploit processes inspired by biological evolution, including, for 

example, reproduction, mutation and recombination. The five best random ALHS 

method realisations were used as a starting point for the EA. The history of objective 

function values during the run of EA is showed in Fig. 4. The curve in Fig. 4 describes 

the evolution of objective function values depending on the EA generations (optimisa-

tion designs). The best EA generation was the generation number 112 in which the 

objective function got the minimum value and the material parameters got the opti-

mum values. It can be seen in Fig. 4 that the optimisation calculation continued even 

after the best EA generation was reached. However, once the algorithm evaluated that 

the results are no longer improving, it automatically terminated the optimisation calcu-

lation. 
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The optimised material parameter values from the best EA generation are pre-

sented in Tab. 2, including the minimised objective function value. 

Tab. 2 The resulting values of the identified material parameters 

Parameter Unit 

Sensitivity analysis 

(ALHS method) 

Global op-

timisation 

(EA) 

Local opti-

misation 

(Simplex 

method) 

Pre-optimised 

values 
RFI 

Optimised 

values 

Optimised 

values 

RO Mg/mm3 2.314 × 10−9 zero 2.400 × 10−9 2.400 × 10−9 

G MPa 12 470 nonzero 13 437 13 735 

K MPa 14 946 nonzero 13 845 13 813 

ALPHA MPa 14.766 nonzero 15.638 15.659 

THETA — 0.3721 nonzero 0.2949 0.2929 

LAMDA MPa 9.6180 nonzero 10.6160 10.5384 

BETA MPa−1 2.132 × 10−2 nonzero 2.189 × 10−2 2.194 × 10−2 

ALPHA1 — 0.6882 zero 0.6500 0.6500 

THETA1 MPa−1 1.057 × 10−3 zero 0.700 × 10−3 0.700 × 10−3 

LAMDA1 — 0.1877 zero 0.1600 0.1600 

BETA1 MPa−1 5.512 × 10−2 zero 4.500 × 10−2 4.500 × 10−2 

ALPHA2 — 0.5544 zero 0.5800 0.5800 

THETA2 MPa−1 7.144 × 10−4 zero 8.000 × 10−4 8.000 × 10−4 

LAMDA2 — 0.1081 zero 0.1200 0.1200 

BETA2 MPa−1 5.832 × 10−2 zero 4.500 × 10−2 4.500 × 10−2 

R — 5.2220 zero 4.7000 4.7000 

X0 MPa 94.060 nonzero 90.000 90.693 

W — 3.348 × 10−2 zero 4.000 × 10−2 4.000 × 10−2 

D1 MPa 2.334 × 10−4 zero 2.000 × 10−4 2.000 × 10−4 

D2 MPa2 3.050 × 10−7 zero 3.000 × 10−7 3.000 × 10−7 

B — 115.76 zero 100.00 100.00 

GFC mJ/m2 6.7900 zero 2.6000 2.6000 

D — 0.1702 nonzero 0.2019 0.1031 

GFT mJ/m2 4.990 × 10−2 nonzero 4.686 × 10−2 4.804 × 10−2 

GFS mJ/m2 4.890 × 10−2 zero 2.600 × 10−2 2.600 × 10−2 

OBJ_FUNC kN2 0.1612 — 0.0772 0.0639 
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Fig. 4 History of objective function values for the Evolutionary Algorithm 

5.3. Local Optimisation 

Within this third part of the whole parameter identification process, just as in the case 

of the global optimisation, optimised material parameter values were sought that 

would minimise the objective function value. Of course, the objective function used 

within the local optimisation corresponded to the objective function described in Eq. 

(9). The aim of the local optimisation was to search the vicinity of the global minimum 

for the purpose of its refinement. 

Just as in the case of the global optimisation, only the material parameters in-

cluded in the reduced design vector were optimised while the other parameters were 

defined deterministically. The local parameter optimisation was performed using the 

direct optimisation algorithm known as the Simplex method [15]. The Simplex method 

belongs to those iterative algorithms that are carried out systematically to determine 

the optimal solution from a set of feasible solutions. The best EA generation was used 

as the starting point for the calculations performed using the Simplex method. The 

history of objective function values during the run of Simplex method is showed in 

Fig. 5 where it can be seen that the best Simplex method generation was the generation 

number 202. In this Simplex method generation, the objective function got the mini-

mum value and the material parameters got the optimum values. As in the case of the 

EA, optimisation calculation continued even after the best Simplex method generation 

was reached but once the method algorithm evaluated that the results are no longer 

improving, it automatically terminated the optimisation calculation. 

The optimised material parameter values from the best Simplex method genera-

tion are presented in Tab. 2, including the minimised objective function value. It can 

be seen from Tab. 2 that the Simplex method provided the best results because the 

objective function value obtained via this method is lower than the objective function 

values gained for the Evolutionary Algorithm and ALHS method. 
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Fig. 5 History of objective function values for the Simplex method 

5.4. Results 

Fig. 6 shows a comparison of the experimentally-measured force-extension curve with 

the force-extension curve obtained from the numerical simulation in which the result-

ing optimised parameter values of the Continuous Surface Cap Model from local 

optimisation (Simplex method – the best results) were applied. It can be concluded 

from Fig. 6 that the material parameters of the Continuous Surface Cap Model were 

optimised very accurately because the numerical simulation result ensures very good 

approximation of the experimental data. 

For comparison, the numerically-simulated force-extension curve for the material 

model version *MAT_CSCM_CONCRETE is illustrated also in Fig. 6. The three 

necessary parameters of this model version were defined by the values 2.4 × 10−9 

Mg/mm3 for the mass density, 44 MPa for the uniaxial compressive strength and 10 

mm for the maximum aggregate size according to the experimental data. It can be seen 

in Fig. 6 that the numerically-simulated data for the model version 

*MAT_CSCM_CONCRETE exhibit significant differences compared to the experi-

mental data in the region of post-peak behaviour. Consequently, it can be concluded 

that the *MAT_CSCM version is more suitable for obtaining the best approximation 

of the experimental data than the *MAT_CSCM_CONCRETE version. However, in 

terms of the quantity of the material parameters, the *MAT_CSCM model version 

usually requires the use of the parameter identification process presented in this paper. 

For another comparison, the numerically-simulated force-extension curves for 

optimised material parameter values are illustrated in Fig. 7. The curves were obtained 

for different loading rates and, for all curves, the material model parameter IRATE was 

equal to zero (rate effects turned off). The solid curve in Fig. 7 corresponds to the 

loading velocity of 0.537 mm/s that was used for all calculations performed in this 

paper. The dotted curve corresponds to ten times faster loading than is the case with 

the solid curve and the dashed curve corresponds to hundred times slower loading than 

it is in the case with the solid curve. It can be seen in Fig. 7 that for material model 

parameter IRATE = 0, the curves for all tested loading rates are practically identical 
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with very small differences. This confirms that if the parameter IRATE of the model is 

equal to zero, the response of the model is always static, independent of loading rate. 

 

Fig. 6 Graphical comparison of simulation results with experimental data 

 

Fig. 7 Comparison of simulated force-extension curves for different loading rates 

6. Conclusion 

This paper was focused on performing the identification of the material parameters of 

the Continuous Surface Cap Model using optimisation algorithms. This was carried 

out utilising an experimental force-extension curve obtained on the basis of evaluating 

the results of direct tensile tests performed on specific plain concrete test specimens. 

The obtained results from the parameter identification process showed that the Contin-

uous Surface Cap Model is a suitable tool to describe the nonlinear behaviour of real 

plain concrete in direct tension. They also indicated that, in cases where the parame-

ters of the material model are conveniently selected and entered, we can obtain a very 

good agreement between the experimental data and numerical simulation. Importantly, 
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this claim was proved by the outcome of the numerical simulation performed using the 

resulting optimised parameter values of the material model from the Simplex method. 

The discussed results approximated the used experimental data very accurately. 

This paper has also shown that with the help of powerful optimisation tools it is 

possible to obtain very good fit for the parameters of a nonlinear material model in-

tended for concrete modelling. Advantageously, the product of the parameter 

identification process performed can be exploited for further research concerning the 

nonlinear numerical response of protective and military concrete structures and, of 

course, general concrete structures also. 
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