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Abstract:  

Establishing the criterion for whether a device under test (DUT) operates correctly or 

not is a complex issue. For devices used in a military setting, it is essential to know if the 

equipment will perform accurately under adverse conditions. In this paper, the example 

of testing resistive temperature sensors demonstrates how to manage the evaluation of 

errors expressed as uncertainties and tolerances. These sensors’ errors are used to 

address the total standard uncertainty, to determine the effective degree of freedom and 

to determine the coverage probability for deriving the coverage factor to establish the 

Student’s quantile as the specific criteria relating to the DUT results. 
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1. Introduction 

When evaluating the correct functioning of a sensor or measuring apparatuses, it is 
a standard procedure to compare the response of a Device Under Test (DUT) with the 
correct values produced under the specific conditions and appropriate standards. Dif-
ferences emerge from the resulting DUT response errors. Such measurements are 
called metrological and can only be conducted in official, authorized laboratories.  

The specified conditions generally include a steady‐state status and are generally 
quite conservative, with severely limited variations in parameter values (including 
measured parameters) and the standard properties. Through calculations, a certain 
reference point is formulated. If the DUT meets the reference point requirements, it is 
assumed to function correctly across the specified measuring range even in variations 
of values affecting the quantities maintained within the limits by the DUT. 
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Often a researcher or end user needs to take metrology‐like measurements for 
their own purposes, and yet they might face a problem that the manufacturer’s condi-
tions for metrological measurement cannot be met. In practice, the problem is in the 
phrase “under specified conditions”. During the test, measurements carried out at 
measured values within a particular broad range, but not only in the reference point, 
a more intricate criterion must be determined for making a decision whether the DUT 
operates properly or not under less controlled conditions. However, meeting such 
a criterion may be interpreted as a chance without sufficient metrological “certainty”. 
Nevertheless, it can deliver adequate data to distinguish DUTs that most likely do not 
operate correctly from those working properly with the correct functionality. 

The following example outlines a way to formulate the proposed criterion. 

2. Measurements to examine RTDs reliability  

Recently, the Faculty of Military Technology conducted an accelerated lifespan test of 
resistive temperature detectors (RTDs). Four suits of four models of sensors consisting 
of 30 pieces each were placed inside a heating / cooling box and were repeatedly 
stressed by temperature shocks from –50 °C to +180 °C and vice versa. A reference 
RTD was located nearby the suits. An autonomous internal system of the box con-
trolled the temperature shifts and at a set target value. A fan was used to circulate air 
inside the box. The airflow distribution partly depended on shapes of the objects in-
serted into the box and it was deemed stable for the invariable inner arrangement. Due 
to the number of sensors, a two‐wire connection was chosen for the test.  

An appropriate computer programs the assigned target temperatures cyclically. 
Some of the shock‐cycles were “burdening” tests while others involved taking detailed 
measurements at temperatures at three target values, i.e. +180 °C, 0 °C and –50 °C. 
Upon approaching the target temperature, the response sets of all sensors, including 
the reference, were scanned and stored. Concurrently, the results were individually 
compensated for leading wire resistances measured before starting the temperature 
cycling, i.e. before the proper lifespan test. 

Temperature data ϑi of i‐th RTD compared to ϑR of the reference RTD placed in 
the box nearby the suits of RTDs arrangement results in a temperature indication dif-
ference  

 Ri iD ϑ ϑ= − . (1) 

The difference exists due to measurement errors and it makes a basis for i‐th 
RTD’s functionality evaluation.  

3. Criterion to identify faulty RTDs 

The key question is, whether an obtained value of the temperature indications’ differ-
ence is justifiable or not. To establish the criterion, the researcher has to take into 
account the sources of all participating measurement errors and to process them with 
respect to their probability distributions. 

In many cases, there is an uncertainty or tolerance describing the accepted limits 
of errors given, but, unfortunately, the information on error probability distributions 
and / or coverage probabilities relating to the uncertainty or tolerance is often missing. 
According to the data’s behaviour, the researchers can consider the stated figure being 
either an expanded uncertainty UN that delimits normally distributed errors (with usual 
coverage probability of 95 % and coverage factor of 1.96) or a tolerance. The toler-
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ance demarcates errors distributed uniformly within the tolerance zone displayed 
symmetrically in the indication vicinity so that the errors’ probability distribution is 
a rectangular one with the coverage probability equal to 100 %. An appropriate cover-
age factor equals √3.  

Since the expanded uncertainties and tolerances are subject to different coverage 
coefficients, standard uncertainties must be used to determine cumulative uncertainty 
as a combined standard uncertainty (see [1] and [2] for more details). A standard un-
certainty uT related to a tolerance ±T applies. 

 T 0.577
3

T
u T= ≅ ⋅ . (2) 

If the figure above shows the expanded uncertainty UN with an associated cover-
age factor of 1.96, the appropriate standard uncertainty uN is therefore 

 N
N N0.510

1.96

U
u U= ≅ ⋅ . (3) 

3.1. Error Sources  

Concerning the RTD, two significant sources of thermal error sources may occur: one 
concerning the RTD itself and the other having a reference to the RTD. As described 
later, there are also other sources of errors, but these are independent of the sensors, 
and therefore have little relevance in this context. 

A detailed survey of possible RTD partial errors is presented in [3]. Where the to-
tal RTD error is customarily specified by limits, i.e. tolerances, quantified as a sum of 
two components, one of them depending on the presented data (the temperature indica-
tion ϑ) and the other being fixed for the given RTD type. The established classes of 
accuracy for platinum resistive sensors, their forms and values are applied in Tab. 1 

[4]. No closer specification concerning the sensor’s errors are given, except for not 
exceeding such stated limits. For this reason, these specifications are seen as toleranc-
es, and as such are rectangular to the probability distribution error. 

Tab. 1 Classes of accuracy and tolerances of platinum resistive sensors [3] 

Class of accuracy Tolerance at temperature ϑ [°C] Temperature range [°C] 

1/10 B ±(0.03 + 0.0005·|ϑ|) 0 to 100 

1/3 B (or AA) ±(0.10 + 0.0017·|ϑ|) −50 to 250 

A ±(0.15 + 0.002·|ϑ|) −50 to 650 

B ±(0.3 + 0.005·|ϑ|) −200 to 850 

C ±(0.60 + 0.01·|ϑ|) −200 to 850 

 
Commonly, sensors from classes A to C are used, while the classes of lines 1 and 

2 (Tab. 1) are used to apply mostly for metrological purposes. All sensors used in the 
measurement test described belong to class B and their indications standard uncertain-
ties are, according to Eq. (2), 

 0.577 (0.3 0.005 )i iu ≅ ⋅ + ⋅ ϑ , (4) 
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 R R0.577 (0.3 0.005 )u ≅ ⋅ + ⋅ ϑ , (5) 

ui denoting the standard uncertainty of the i‐th RTD’s indication and uR of the RTD 
reference. 

The next source of difference Di total error component stems from thermal inho-
mogeneity inside the heating / cooling box despite the air being circulated by a fan. 
Therefore, an RTD and the reference RTD are exposed to (and measure) slightly dif-
ferent temperatures. Owing to the thermal box data, inhomogeneity ±H is a kind of 
tolerance and the rectangular distribution is justified here. Therefore, for the corre-
sponding standard uncertainty uH, the following formula can be applied: 

 H 0.577u H≅ ⋅ . (6) 

Measuring the RTD’s resistance introduces an error due to the connection re-
sistance between an RTD and the measuring instrument. This applies for all RTDs 
inclusive of the reference one. Although all leading copper‐wire resistances at the box 
temperature 0 °C were compensated for, their changes occurred due to the wire’s 
temperature variations. In particular, about 1/7 of the wire’s length was inside the 
thermal box and exposed to maximum temperature variations, as it nominally reached 
180 °C. In this instance, the rated resulting relative change of the wire’s resistance 
transferred to temperature error is utmost (1/7)·180·0.00383 ≈ 0.098 °C (where 
0.00383 is the copper temperature coefficient of resistance) which is about one order 
less than some of the other errors. Moreover, when establishing the difference Di, such 
errors (of systematic behaviour) of the i‐th RTD and the reference RTD are partially 
compensated for. As a result, these errors are negligible.  

The same conclusion was reached after consideration of the Di error caused by 
the additional heating of RTDs by measuring current. Usually, there is not enough 
information available to calculate this type of error in detail, but it is included in the 
specifications of a sensor´s accuracy through its accuracy class providing that the 
current value is maintained within the specified interval. Maximum and recommended 
current is usually predetermined. For this experiment, the recommended current was 
used. In addition, those small errors of two sensors compensates for in the differ-
ence Di. 

Finally, there is a dynamic error arising due to imperfectly reaching the tempera-
ture’s steady state when reading the temperature indications of both an RTD and the 
reference RTD. In reality, one can never achieve an absolute steady state due to small 
degrees of instability inherent to the box temperature’s controlling system. Moreover, 
inertias (differing each one from another) of the RTDs are active. 

As a result, the collected differences Di belonging to the i‐th RTD are detected 
during the temperature measuring cycle at variable temperature readings that are simi-
lar to, but still different from the target temperature (e.g. 180 °C). A difference Di 
error due to inertia reflects different inertias of sensors, variations of both temperature 
and airflow inhomogeneity in the box, variations of deviations of reading the tempera-
ture from the target one, nonlinearity of the i‐th RTD and of the reference RTD, as 
well as some unspecified influences. With respect to these factors, it is advisable to 
evaluate families of differences Di consecutively collected and coming from different 
shock‐cycles. For establishing the criterion to judge the n‐th temperature difference, 
statistical evaluations of a family consisting of the previous n−1 elements Di for 
a given target temperature can provide an estimation, as an average difference Di;a 
provided that none of the n−1 differences was evaluated as being defected. Due to the 
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number of random component grounds and according to the Central Limit Theorem, it 
is justified to expect an approximately normal distribution of the random component 
values probability and to estimate the variations by means of standard deviation of the 
difference i.e. the standard uncertainty ui;Dn  
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n´ denoting the portion of all n ≥ n´ indications that belong to the population of indica-
tions satisfying the criterion. 

3.2. The Thermal Difference Total Standard Uncertainty 

The measurement function Eq. (1) has a very simple form and the sensitivity coeffi-
cients or partial derivatives ∂Di/∂ϑi and ∂Di/∂ϑR are equal to 1. Hence, the cumulated 
difference or total standard uncertainty is 

 2 2 2 2
;TD R H Di i iu u u u u= + + + .  (8) 

Using Eq. (1) and Eq. (4) to (7) provides a practical expression to calculate ui;TDn 
applicable to the last, i.e. the n‐th read temperature indications ϑi;n and ϑRn  
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Using ϑi;n−1 and ϑRn−1 evaluated positively during the previous stage prevents con-
taminating ui;TDn by values that do not belong to the population. In this regard, the 
criterion will be predictive by steps. 

3.3.  Effective Degree of Freedom 

The effective degree of freedom νi;TDn attributed to ui;TDn is one of two assessment 
bases for the value’s coverage factor (related to Student’s distribution) and further to 
the expanded uncertainty Ui;TDn, the desired coverage probability is the other base. 

In general, νi;TDn depends on the standard uncertainties at play and on their de-
grees of freedom. Their relation is the Welch‐Satterthwaite formula [2] according to 
which is 
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In this case, the degrees of freedom νiT, νR, and νH equal infinity and νi;Dn = n´ –2. 
Hence 
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4
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i n
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n

u
ν = − . (11) 

3.4. Coverage Probability and Coverage Factor 

Before a derivation of the coverage factor k, coverage probability p should be selected 
and attributed to the demanded reliability of the criterion. Coverage factors that corre-
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spond to the chosen p vary with νi;TDn and are equal to Student’s fractile tp(ν) values 
that are available in a table (e.g. Tab. G.2 in [2] or Tab. IIa in [5]) , being  

 ( ) ( );TDn p p i nk t t= ν = ν . (12)  

Handling the data available on‐line, it is also possible to calculate the coverage 
factor kn successively according to n´ etc. with the appropriate probability (1+p)/2 

which corresponds to a symmetrical two‐sided confidence interval and to the accepted 
coverage probability p. A spreadsheet calculator can be useful for performing this. 
(For example, a function T.INV is felicitous for the calculation in Microsoft Excel.) 
Whilst commonly used probability value of p = 95 % may be rated too low for the 
purpose, p = 99 % seems to be a more acceptable value and results in a more reliable 
final DUT decision‐making.  

3.5. The Criterion 

Multiplying the ui;TDn by kn gives a value of expanded uncertainty  

 ;TD ;TDi n i n nU u k= ⋅ , (13)  

which is believed the magnitude of difference Di;n should not exceed. Therefore, the 
i‐th RTD to meet the test in n‐th measuring means satisfies the criterion 

 ; ;TD i n i nD U≤ . (14) 

4. Practical Application Suggestions 

From the very beginning of cycling the test, n is very small and the magnitude of ui;Dn
2 

may strongly dominate the sum of other addends in (9) provided the temperature dif-
ference indications fluctuate intensively. Hence, it would lack purpose to use Eq. (13) 
and (14) for a very small sample size n. However, one may evaluate several very ini-
tial read differences Di “backwards” by Di;N after n having reached a high enough 
value n = N (e.g. 20 to 30) provided that all the readings to that point comply with Di;N 
and belong to the population. This technique causes no additional problems when 
managing the collected data off‐line, but users should be mindful of this issue when 
creating a programme for operating on‐line. If an indication does not comply with the 
criterion, it is thought not to belong to the population and needs to be excluded from 
computing the Ui;TDn. 

Conversely, in case the ui;Dn
2 is negligible compared to the other addends in Eq. 

(9), one can find minimal values of ui;TDn for the three target temperatures –50 °C, 
0 °C and 180 °C, respectively: min{ui;TDn(−50 °C)}= 1.02 °C, min{u;iTDn(0 °C)}= 0.900 °C, 
min{ui;TDn(180 °C)}= 1.67 °C (with H = 1.5 °C).  

Accordingly Eq. (11), the effective degree of freedom rises with n´ increasing as 
well, and if n´ or ui;TDn/ui;Dn is high enough, the νi;Dn approaches infinity giving 
kn = 2.576 for p = 99 %. Therefore, minimal values may be evaluated of expanded 
uncertainties for indications equal to the target temperatures: 
min{Ui;TDn(−50 °C)}= 2.63 °C, min{ Ui;TDn(0 °C)}= 2.32 °C, min{Ui;TDn(180 °C)}= 4.30 °C. 

These values are suitable Rules of Thumb for rough estimates. When an RTD 
complies with these more severe limits, it does so also with the criterion Eq. (14) for 
every n´. 
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5. An Illustrative Example 

Fig. 1 shows an example of a resulting measurement record of RTD18 that has not 
passed the test for the target temperature 0 °C. According to Eq. (9), (11), (12) and 
(13), the values of the Criterion curve as well as those from the Rule of Thumb curve 
(with omitting u18Dn) for the actual temperature indications were calculated. One‐step 
predictive evaluation was used to exclude indications from the calculation that did not 
comply with the criterion. 

   

Fig. 1 Graph of absolute value of difference ϑ18 – ϑR (left) and a detail of it (right). 

The vertical scales represent the indicated temperature in degrees of Celsius; the 

horizontal scales denote order numbers of measuring cycles. 

Obviously, variations of readings due to the dynamic error discussed in 3.1 were 
very small here and the value of ui;Dn was very small until a malfunction of RTD18 
manifested. As a result, the Criterion curve almost copies the Rule of Thumb in this 
part of the graph.  

The fault of RTD18 was deemed to be creeping. After several additional loading 
cycles had passed, its exhibition diminished and the sensor seemed good despite the 
strong variation in thermal difference. Consequently, the calculated Criterion value 
rose a little, as the ui;Dn was no longer negligible. Later, the RTD18 fault rise continued 
until the sensor circuit disconnected which was a response of the indication limit about 
1 × 1037 °C. 

6. Conclusion 

Rather than continue to be frustrated by DUT errors, this article presents an approach 
to appreciate the effect of errors accompanying a measurement on the measurement 
result reliability expressed as an expanded uncertainty attributed to the measurement 
result.  

As outlined in the article, the process was divided into several consecutive steps 
starting with the measurement function formulation for the quantities present. The next 
step, which involved revealing all the potential error sources, was critical. After that, 
every error (given as an expanded uncertainty or tolerance) needed to be converted to 
standard uncertainty taking into account the error probability distribution. Then, using 
the appropriate sensitivities of measurement function to their quantities variations, 
individual error contributions to the standard uncertainty of measurement results could 
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be derived. A mutual comparison of these contributions allowed for the exclusion from 
future computation those whose values were at least two orders in magnitude smaller 
than others, alternatively. Significant contributions added in the RSS fashion have thus 
given the resulting standard uncertainty. To designate expanded uncertainty as an 
indicator of result reliability, its degree of freedom is to be specified using standard 
uncertainties of single errors and their degrees of freedom. After accepting coverage 
probability of the measurement result, a coverage factor as the Student´s quantile can 
be found and resulting expanded uncertainty of measurement result can be finally 
assessed.  

Acknowledgement 

The research work presented in this paper has been supported by the Ministry of De-
fence of the Czech Republic – research project VÝZKUMFVT (DZRO K‐217). 

References 

[1] TNI 01 0115 / ISO / IEC Guide 99:2007. Basic and General Concepts and Asso-

ciated Terms (VIM). ÚNMZ, 2009, 88 p. 

[2] ČSN P ENV 13005 / ENV 13005:1999. Guide to Expression of Uncertainty in 

Measurement . ČNI, 2005, 239 p. 

[3] Resistance Thermometry: Principles and Applications of Resistance Thermome-

ters and Thermistors. MINCO, 2011, 24 p. Available at <https://www.minco. 
com/~/media/files/minco/whitepapers/sensors/resistance-thermometry.ashx>. 

[4] KREIDL, M. Temperature Measurement – Sensors and Measuring Circuits (in 
Czech). Prague: BEN, 2005, 239 p. ISBN 80-7300-145-4. 

[5] ČSN ISO2854. Statistical Data Interpretation – Estimates and Tests of Mean 

Values and Scattering (in Czech). ČNI, 1994, 41 p. 
 


