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Abstract:  

The article deals with the analysis of gas flows in pumped canals in differential pumped 
chamber of the Environmental Scanning Electron Microscope (ESEM). The article 
compares and verifies existing results of differentially pumped chamber flow simulation 
from ANSYS Fluent system, which uses the mechanics of continuum, with the ones 
published by D. Danilatos using the Monte Carlo method. 
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1. Introduction 
The article analyses the gas flow within the differentially pumped chamber, 

which is a part of the Environmental Scanning Electron Microscope (ESEM) [1]. This 
type of microscope is designed for studying samples which naturally contain water [2]. 
The differentially pumped chamber’s purpose is to separate the high vacuum area (the 
microscope’s tube) from the high pressure area (the sample chamber). This separation 
is being achieved by two apertures PLA1 and PLA2, preventing the fast equalization 
of gas pressure throughout the microscope while the tube is being drained [3]. The 
tube of the microscope is pre-drained with a rotatory pump and then the gas pressure is 
stabilized by a diffusion pump. Another rotatory pump is located in the differentially 
pumped chamber, stabilizing the gas pressure at a required value with continual 
pumping. 
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The design and the boundary conditions we used are the same as G.D. Danilatos 
published. He used the Monte Carlo method in order to achieve the best pumping 
results and the smallest possible losses of the electron beam. The Monte Carlo method 
is based on running numerous random experiments with the model of the system 
where their evaluation shows the possibility of specific effect. In this manuscript, there 
are compared the results obtained by applying the Monte Carlo method with the results 
obtained by applying the method which uses the mechanics of the continuum used for 
calculations of the simulations by the ANSYS Fluent program [4]. Mathematical 
principles of this method are further described in Chapter two. The topic of this work 
is the comparison of two methods mentioned above and their results for the purpose of 
deciding which one is more accurate and. It could be used for further simulation 
calculations for the purpose of additional improvements in design of the ESEM type 
microscope [5].  

1. Mathematical Interpretation 
For the modelling of individual apertures, the SolidWorks and ANSYS Fluent were 
used and thus the flow can be calculated using the finite volumes method. ANSYS 
Fluent solves a system of three partial differential equations supplemented with 
a fourth equation of state. It is a type of three-dimensional flow of compressible 
viscous fluid. Basic equations describing the flow of viscous compressible fluid 
written in conservative form are the three conservation laws, the Law of Conservation 
of Mass, Momentum and Energy completed with the Equation of State of the consid-
ered fluid [6]. 

The mathematical-physical model can be found in [8]. 

1.1. Solver settings 
We decided to use the Density-Based Solver because of the compressibility of the flow 
and the assumption of high gradients associated with the supersonic flow.  

The Density-Based Solver solves the governing equations of continuity, momen-
tum, and in this case also energy and species transport simultaneously as a set, or 
vector, of equations. Governing equations for additional scalars will be solved sequen-
tially (that is, separated from one another and from the coupled set). Two algorithms 
are available for solving the coupled set of equations, the coupled-explicit formulation 
and the coupled-implicit formulation.  

In this case, we used the Implicit Formulation, where the unknown values are 
given from the existing ones and also from the unknown values of adjacent cells. 
Every unknown value appears in more than one equation in the assembly and these 
equations are solved concurrently. 

In this case, we did not use the calculation schema of Roe Flux-Difference Split-
ting Scheme, but we used the AUSM (Advection Upstream Splitting Method), which 
is preferable for the supersonic flow solving.  

Firstly, the AUSM scheme computes a cell interface Mach number based on the 
characteristic speeds from the neighbouring cells. The interface Mach number is then 
used to determine the upwind extrapolation for the convection part of the inviscid 
fluxes. A separate Mach number splitting is used for the pressure terms.  

The AUSM scheme has several desirable properties: 
1. It provides an exact resolution of contact and shock discontinuities. 
2. It preserves positivity of scalar quantities. 
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3. It is free from oscillations at stationary and moving shocks. 
For discretization we used second Order and Power Law schemas. 

The Power Law Scheme interpolates the face value of a variable ϕ using the exact 
solution to a one-dimensional convection-diffusion equation (1). 

 
Fig. 1 Power law scheme 
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where Pe is the Peclet number given by 

 
α

LU=   Pe . (2) 

The Peclet number is defined as the ratio of the rate of convection of a physical 
quantity by the flow to the rate of diffusion of the same quantity driven by an appro-
priate gradient [9]. Where U is the freestream velocity, L is the characteristic 
dimension of the problem, and α is the coefficient of thermal diffusivity. 

1.2. Knudsen number 
The Knudsen number (Kn) is a dimensionless number defined as the ratio of the mo-
lecular mean free path length to a representative physical length scale. The Knudsen 
number helps determine whether statistical mechanics or the continuum mechanics 
formulation of fluid dynamics should be used to model a situation (3),  

 
L
I=Kn , (3) 

where I is the mean free path and L is the characteristic dimension. If the Knudsen 
number is near or greater than 0.5, the mean free path of a molecule is comparable to 
a length scale of the problem, and the continuum assumption of fluid mechanics is no 
longer a good approximation. In such cases, statistical methods should be used. 

In practice it is sufficient to approximate the relation for the mean free path in 
air by 

https://en.wikipedia.org/wiki/Convection
https://en.wikipedia.org/wiki/Diffusion
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where p is the air pressure. 

2. Results 
The comparison of simulation results from the Monte Carlo method with the results 
obtained using the ANSYS Fluent shows that both methods have had similar results. 

Fig. 2 and 3 show a graphical representation of the density number distribution, 
whereas Fig. 2 shows the results published by D. Danilatos and Fig. 3 shows the 
results obtained from ANSYS Fluent, respectively. As mentioned above, the compari-
son of the two figures shows that the results are almost identical, including those for 
the characteristic gradients caused by a supersonic flow. The comparisons of the 
values of velocity in Fig. 4 and temperature in Fig. 5 on the trajectory between the two 
pressure limiting apertures PLA1 and PLA2, which are also almost overlapping, is 
also worth attention. 

The only difference could be found at the temperature curve showing the area 
near the aperture PLA2, where the value obtained by the ANSYS Fluent system 
changes slower. The sharp transition between the values published by D. Danilaos 
might be caused by a singular point. In this case, the results obtained by the ANSYS 
Fluent system correspond better to the expected physical processes. 

 
Fig. 2 Inter-aperture flow field with plane geometry PLA2 calculated using  

the Monte Carlo method [7] 

In the second case of the differentially pumped chamber with deflector shape 
given in Fig. 6, the results of the density number decomposition values are similar.  
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The results in Fig. 6 show lower pressure values in the area of supersonic flow 
and also higher values in the area of interfering gas, where velocity of the gas declines 
from the supersonic velocity area to subsonic area. 

The results in Fig. 7 show the ability of the deflector to deflect the pumped gas 
stream to the required direction and to prevent the density number values fluctuations 
in the area of primary beam between the apertures. 

 
Fig. 3 Inter-aperture flow field with plane geometry PLA2 - calculated  

using the ANSYS Fluent 

 
Fig 4. Velocity on the trajectory of the primary beam in comparison of both methods 
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Fig. 5 Temperature on the trajectory of the primary  

beam in comparison of both methods 

 
Fig. 6 Inter-aperture flow field with conical PLA2 geometry calculated using  

the Monte Carlo method [7] 
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Fig. 7 Inter-aperture flow field with conical PLA2 geometry - calculated  

using the ANSYS Fluent 

3. Conclusions 
The results published by D. Danilatos, who used the Monte Carlo method, are practi-
cally identical to the results obtained by ANSYS Fluent, which uses the finite volume 
method and the continuum mechanics assumption. 

The Monte Carlo method does not impose the basic requirement of individual 
connections between subdomains and thus it can afford to describe the one-side effect, 
which is not possible to describe with a continuous function. On the other hand, 
however, this method can lead to a wrong result, because it is not constrained by the 
continuity assumption. The Monte Carlo method is applicable only when one needs to 
solve the movement of individual molecules when it comes to a particulate movement, 
which has a stochastic character. Under these conditions, the Navier-Stokes equations 
become no longer valid. In contrast, when the continuity assumption is appropriately 
justified, it is always better to use the Navier-Stokes equations, which are mathemati-
cally better able to describe the physical connections in the fluid. This is because the 
Navier-Stokes equations are derived from the forces which affect individual parts of 
the fluid: gravitation, pressure, friction between neighbouring particles of the fluid, 
and the onset of turbulence. The state of the fluid is described by its speed and pres-
sures at all points, in which this fluid is present. In a continuum, two forces are acting 
on each element of fluid: the volume (simpler) and surface (more complicated), which 
are conducted by adjacent fluid elements. Moreover, the surface force is composed of 
two parts: the first is related to the pressure and the second, which is more difficult to 
describe, is attributed to the shear on the surfaces of individual fluid elements, known 
as viscosity (the internal friction). This complex process under the continuum assump-
tion can be precisely balanced in the Navier-Stokes equations, which, compared to the 
Monte Carlo method, do not allow for solving the problem stochastically, but are able 
to provide an accurate description of the behaviour of complex fluids. 
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The Navier-Stokes equations are an emblematic example of a set of equations 
that appear simple, but are very complex partial differential equations internally. 
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