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Abstract:  

Motion control of electromechanical systems still plays a very important role in a wide 

area of weapon systems. Modern control systems use not only data from various sensors, 

but also state parameters of controlled system. The article explores the influence of state 

space topology on parameter identification of real simple electromechanical system 

based on the Particle Swarm Optimization (PSO) method. Four different but equivalent 

mathematical models of the second order were used to create different state spaces of 

the system parameters. A general recommendation for the PSO method setup and two 

independent program tools were applied to evaluate the state space searching by the 

PSO method. The PSO simulations were focused on both narrow and wide state spaces 

around the fitness function global minimum. A novel approach to set the PSO method 

initial agents’ positions has been introduced since the traditional random uniform 

distribution failed when wide state spaces were used. 
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1. Introduction 

With the increasing power of computers, the stochastic optimization methods became 

very popular. One of the first methods which were implemented was the Particle 

Swarm Optimization Method (PSO). Even though many other methods were 

introduced, the PSO method still remains one of the best methods [1, 2]. 

Various modifications of the PSO method have been introduced by many authors 

either to improve the PSO method itself or to fuse the PSO method with other 

optimization methods, recently e.g. [3 ‒ 6]. 
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This article proposes the hypothesis that the traditional random uniform 

distribution used for the PSO method initial agents’ positions can fail within 

a considerable wide state space. The idea is applied on different but comparable state 

spaces to evaluate the influence of state space topology on the behaviour of the PSO 

method. Mutual transformation of state spaces is also considered as a base for 

advanced simulations. 

Modelling the swarm moving across a state space is represented by a set of 

simple equations Eq. (1), (2). Each step of the simulation is followed by calculating 

fitness functions and reporting the good and the best agents’ positions.  

    kskpkk xxcrxxcrvcv  332211 , (1) 

 11   kkk vxx . (2) 

In the automation control theory, a transfer function is widely used as an easy 

description of any realistic linear system. However, the identification of the transfer 

function parameters still remains the main challenge, even if the transfer function 

structure is known. A system time response can be used for both determined and 

stochastic identification. For the purpose of this article, only the system of second 

order will be considered. These systems can be described by transfer functions with 

various state space topology based on its parameters [7, 8]. 

The quality of the identification process called the fitness function is given by the 

difference between the actual measured system response and the mathematical model 

simulated response. The fitness function can be described by various mathematical 

functions. One of the possible formulas for an integral fitness function is Eq. (3). For 

a simulation, the integral fitness function can be transformed into the form of Eq. (4). 
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A simple electromechanical system is represented by a separately excited DC 

motor. The system data measured were both the input armature voltage and the output 

rotational speed, while the nominal voltage step function was used as a test input 

function. Rotational speed was measured by a DC tachogenerator, and therefore, ripple 

voltage and additional noise can be seen in Fig. 1. Voltages were measured with 

a sampling frequency of 20 kHz. The effect of measurement errors, e.g. aliasing and 

quantisation errors of A/D converters, on resulting digital value of rotational speed 

was not analysed, as the paper is focused on optimisation methods.  

Four equivalents (A), (B), (C), and (D) were used as three-parameter models for 

the PSO implementation in such a way that model (A) was chosen as the primary 

model, while models (B), (C) and (D) were derived from it (A). Moreover, each model 

has its own state space based on its parameters.  

Tab. 1 shows the parameters of all models in detail. The transformation equations 

can be used for direct transformation from the primary model (A) into the other 

models (B), (C) and (D). The reversal transformations from other models to primary 

model (A) can lead to complex numbers of primary model (A) parameters even if 

other models initial parameters are randomly chosen real numbers. 
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Fig. 1 Real time system input armature voltage and output rotational speed 

Tab. 1 Models of simple electromechanical systems  

Model Transfer function State vector 
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2. State Space Topology 

The PSO method is a stochastic method, so setting up the initial conditions for 

different models is rather complicated. Random seed settings and model 

transformations were used to remove the stochastic part of the experiments , since they 

ensure the same position of agents at the beginning of each experiment with all the 

different models (A), (B), (C) and (D). They also guarantee that the only factor that 

has an impact on the results is the state space structure. 

The PSO method has three parameters that can vary. Setting for the PSO method 

given by Eq. (5), (6) was confirmed as the (sub)optimal and only those PSO 

coefficients were later used in all experiments [9]. 

    kskpkk xxrxxrvv  321 4.14.17.0 , (5) 

 11   kkk vxx . (6) 

As the PSO is a method that has no general rule for ending the optimization 

process, not each one of them finds the optimal solution. Moreover, the PSO method 

very often finds just a suboptimal solution. Therefore, the PSO optimization results 
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were stored throughout many different stages and snapshots were taken at 25th, 50th, 

100th, 150th and 200th step of the optimization process. During the experimental phase, 

dozens of experiments were calculated and stored. For later evaluation, the database 

was defined with the following structure: 

• Random generator seed. 

• Model type (A), (B), (C) or (D). 

• Number of steps in the optimization process. 

• Fitness function value. 

• Calculated suboptimum. 

The fitness function global minimum was found at different locations from the 

system state vectors and its value was not only confirmed a number of times during the 

conducted experiments, but it was also calculated independently by the Nelder-Mead 

simplex search method using the MATLAB program tool. The value of the fitness 

function global minimum is: 

   174412.3432mL . (7) 

The PSO simulations were performed in two different state spaces of the ini tial 

estimates, a narrow and a wide state space around fitness function global minimum, 

see Tab. 2. Both state spaces were derived from the optimum global minimum given 

by Eq. (7), transformed into state space of each model. The narrow state space limits 

were calculated as one order higher and one order lower than the magnitude of each 

element of the model state vector. The wide state space limits were calculated in 

a similar way as five orders higher and five orders lower. 

Models (A) and (B) have within their state spaces two optima, as it is shown in 

Tab. 1 and Tab. 2. This suggests that those models would be much more successful 

than models (C) and (D). The global minimums and their close proximities were 

graphically displayed in the MATLAB program for each model. State space of model 

(A), shown in Fig. 2 (on the left), is totally different from the others. The state spaces 

of models (C) and (D) are “smooth” as the state space of model (B) shown in Fig. 2 

(on the right). 

 

Tab. 2 State space limits 

Model Global minimum 
Narrow  

state space 

Wide  

state space 

A 

4.8831·105 

2.8248·102 

1.6224·101 

<104; 106> 

<101; 103> 

<100; 102> 

<100; 1010> 

<10-3; 107> 

<10-4; 106> 

B 

1.0655·102 

6.1637·10-2 

3.5401·10-3 

<101; 103> 

<10-3; 10-1> 

<10-4; 10-2> 

<10-3; 107> 

<10-7; 103> 

<10-8; 102> 

C 

1.0655·102 

3.3481·10-3 

6.5179·10-2 

<101; 103> 

<10-4; 10-2> 

<10-3; 10-1> 

<10-3; 107> 

<10-8; 102> 

<10-7; 103> 

D 

1.0655·102 

2.1820·10-4 

6.5179·10-2 

<101; 103> 

<10-5; 10-3> 

<10-3; 10-1> 

<10-3; 107> 

<10-9; 101> 

<10-7; 103> 
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Fig. 2 Model (A) and model (B) state spaces for constant motor gains K 

3. Basic Results 

Two program environments were chosen for conducting the experiments – the 

MATLAB Routine and the Open Optimization Routine (OOR). Both tools used 

controlled random number generators to assure simulation repeatability in the future. 

Moreover, the random number generator was the same for both routines during all the 

experiments and was calculated by a particular program tool to suit the PSO method. 

The MATLAB Routine was compiled both in MATLAB release R2009a and 

2014b because of the updated random number generator syntax. The MATLAB 

routine follows the PSO algorithm utilizing MATLAB embedded function “tf” to 

create a model transfer function and a function “lsim” to evaluate the fitness function. 

The Open Optimization Routine (OOR) has been developed for the open 

optimization process [9, 10]. The inner structure allows the scientists to define the 

optimization problems independently and then to compare their results. The OOR was 

compiled using C# language and .NET environment. For the evaluation of the fitness 

function, the theory of “Differential Equation Numerical Solution” was used. As 

models (A), (B) and (C) can be transformed into model (D) (and for fitness function 

evaluation the models were transformed), only the state differential equations for 

model (D) can be used. 

For the purpose of these experiments, an acceptable level of accuracy of the 

proposed results had to be established. The examples of the PSO results are shown in 

Fig. 3 on the left. The limit of 5 % accuracy chosen for the fitness function global 

minimum was based on the step response error range described by automation control 

theory. The examples of the PSO results falling into the 5 % accuracy limit are then 

shown in Fig. 3 on the right. Both graphs are related to model (A) when 100 steps of 

the PSO method were initialized in narrow state space by random uniform distribution 

in MATLAB (72.3 % of PSO simulation results entered the 5 % accuracy limit).  

To validate the experiments, snapshots after 25th, 50th, 75th, 100th, 150th and 200th 

step of the PSO method were taken. Tab. 3 and Tab. 4 show the percentage of 

successful results for selected sets of steps performed by OOR. As expected, the more 

steps in the PSO method, the higher the probability for getting good results. At the 

number of 100 steps, there is a very high probability for gaining suitable results.  
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Fig. 3 Examples of PSO results: no limits and 5 % accuracy limit 

 

 The PSO method uses a random initial placement of agents within the state 

space. This placement can be done with different distributions, however, generally 

recommended random uniform distribution proved to be very successful except model 

(D) average success for the narrow state space; nonetheless it was completely 

ineffective for exploring the wide state space. 

An innovative approach to set the PSO method initial agents’ positions within 

a wide state space had to be introduced. A random log-uniform distribution using 

a probability distribution of random variables whose logarithms are uniformly 

distributed was chosen. Such distribution grants the same probability of success for 

numerous intervals <100; 101>, <101; 102>, <102; 103>, etc. 

 

Tab. 3 PSO OOR within the 5 % accuracy limit (uniform distribution) 

Steps 
Narrow state space Wide state space 

A B C D A B C D 

25 25.5 18.1 15.5 8.8 0.0 0.0 0.0 0.0 

50 58.9 52.3 47.1 30.6 0.1 0.0 0.0 0.0 

75 74.0 72.5 64.9 43.4 0.4 0.0 0.0 0.0 

100 79.1 77.7 71.9 48.5 0.7 0.0 0.0 0.0 

150 82.4 80.6 75.1 53.2 3.8 0.0 0.0 0.0 

200 82.9 80.6 75.4 53.3 8.6 0.0 0.0 0.0 

 

Tab. 4 PSO OOR within the 5 % accuracy limit (log-uniform distribution) 

Steps 
Narrow state space Wide state space 

A B C D A B C D 

25 22.2 31.5 34.0 29.6 1.9 2.0 1.3 1.1 

50 43.4 61.6 62.4 54.7 10.7 10.3 7.2 6.4 

75 52.9 69.1 71.1 64.0 21.3 21.0 16.5 15.2 

100 57.5 72.5 73.6 67.2 31.7 29.7 27.0 24.8 

150 61.9 74.7 75.3 69.8 46.3 38.8 33.5 34.2 

200 62.4 75.0 76.0 69.9 54.0 39.7 34.8 35.9 
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The use of log-uniform distribution revealed very good success except model (A) 

average success when exploring the narrow state space and, at the same time, much 

better success than uniform distribution when exploring the wide state space. We can 

conclude that the hypothesis about better behaviour of the PSO method within wide 

state space initialized by random log-uniform distribution is true. Moreover, we can 

recommend using the random log-uniform distribution instead of the random uniform 

distribution in all cases where the dimensions of state space are not known.  

According to the theory of probability, it is better to run 100 steps of the PSO 

method twice than to run 200 steps of the PSO method once. Tab. 5 shows the 

percentage of MATLAB 1000 runs of PSO-100 step simulations falling within the 5 % 

accuracy limit for model A, evaluated as 1000 single runs, 500 pairs, 333 triplets and 

250 quadruplets. 

Tab. 5 MATLAB repeated runs probability (100 steps) 

Distribution Interval 
One 

run 

Two 

runs 

Three 

runs 

Four 

runs 

uniform narrow 72.30 92.20 97.30 99.60 

uniform wide 49.20 75.20 87.09 94.00 

log-uniform narrow 2.00 3.60 5.71 7.20 

log-uniform wide 30.20 50.80 62.76 76.00 

 

Due to the space restriction of the article, only 100 steps of PSO simulations were 

chosen to compare simulation results. Comparing the two independent experimental 

tools in Tab. 6 shows almost the same influence of state space topology on the PSO 

method results when exploring the state space was initialised by uniform distribution. 

Some distinction can be found between MATLAB and OOR results when exploring 

the state space was based on log-uniform distribution of initial agents’ positions but 

both methods confirmed our hypothesis about better behaviour of the PSO method 

within wide state space. 

Tab. 6 PSO within the 5 % accuracy limit (basic results) 

Distribution Interval 
MATLAB OOR 

A B C D A B C D 

uniform narrow 72.3 69.3 64.9 41.0 79.1 77.7 71.9 48.5 

uniform wide 2.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 

log-uniform narrow 48.3 71.3 66.4 64.6 57.5 72.5 73.6 67.2 

log-uniform wide 30.2 44.0 35.1 35.5 31.7 29.7 27.0 24.8 

 

4. Advanced Results 

All the gained results were very interesting and more or less anticipated [12]. The next 

issue to explore was the influence of the model transformation on PSO simulation 

success. New sets of simulation were performed with initial estimates of models (B), 

(C) and (D) calculated from the initial estimates of model (A) according to the 

transformation equations.  
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Comparing uniform distribution for the narrow state space, there is a little 

progress in model (B) and (C) success; though there is a noticeable leap in model (D) 

success. However, the other three sets of simulations were less successful , compare 

Tab. 6 and Tab. 7. 

Tab. 7 PSO within the 5 % accuracy limit (advanced results) 

Distribution Interval 
MATLAB OOR 

A B C D A B C D 

uniform narrow 72.3 72.9 79.8 88.0 80.5 75.7 84.5 89.8 

uniform wide 2.0 0.4 0.5 0.3 1.9 0.3 0.3 0.7 

log-uniform narrow 48.3 50.2 54.7 56.2 57.5 53.6 59.9 60.8 

log-uniform wide 30.2 21.1 34.3 23.1 33.9 14.3 22.4 15.6 

 

Having results for all models allowed to evaluate equal success for each model. 

Evaluation was done by comparing the success of separate models initialised by the 

same random generator seed. Tab. 8 shows the number of successful results (unlike the 

percentage of successful results in the previous tables) based on success of exactly one 

model (A, B, C or D), exactly two models (AB, AC, AD, BC, BD or CD), exactly 

three models (ABC, ABD, ACD or BCD) and success of exactly all four models 

(ABCD).  

Tab. 8 MATLAB PSO within the 5 % accuracy limit 

Distribution Interval 
Original (see Tab. 6) Transformed (see Tab. 7) 

1 2 3 4 1 2 3 4 

uniform narrow 149 331 320 176 83 127 163 576 

uniform wide 20 0 0 0 22 3 0 1 

log-uniform narrow 123 310 385 152 221 228 175 223 

log-uniform wide 298 214 178 47 234 152 119 48 

 

As mentioned above, the basic experiments were initialized by the same random 

generator seed but different agent start positions, while the advanced experiments were 

initialized by the same random generator seed and the same agent start positions 

transformed into each model state space. Many questions arose and the main question 

is whether we could get better results, if the different models were combined together. 

To an inexperienced user who would like to utilize the particular results 

presented in this article, model (A) can be recommended for any identification 

processes using the PSO method. On the other hand, in some special cases, model 

cooperation based on initial estimates transformation gives the best results.  

5. Conclusion 

The PSO method is a probabilistic method, thus numerous tests must be conducted in 

order to get precise results (a suboptimal solution is very close to an optimal solution). 

Each test described in this article was run and evaluated at least 1000 times and thus 

the stochastic behaviour of the PSO method should have minimum effect on the 

presented results. 
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The use of two different tools (MATLAB and OOR) offers the validation that is 

often needed. While MATLAB is a universal tool for many applications, the OOR is 

a very specific application (and library) that enables faster experiment execution. 

Using the same hardware for running particular experiments, the OOR needs 

approximately half computation time than the MATLAB. 

The hypothesis that the traditional random uniform distribution used for PSO 

method initial agents’ positions fails within the really wide state space was fully 

confirmed. Experiments based on the proposed random log-uniform distribution 

showed better success than the uniform distribution when the wide state space was 

explored. Such basic results may imply general recommendation to use log-uniform 

initialisation of the PSO method when the state space dimensions are really not 

known. 

Advanced results have shown the influence of the model transformation, more 

precisely the influence of the transformed initial position estimates on the PSO 

method. The idea models (C) and (D) would be much less successful than models (A) 

and (B) because having only one optimum within the state space was not confirmed 

during basic experiments. However, the transformed initial position estimates based on 

state space of model (A) helped in some cases other models to get better results.   

To conclude, the use of different models resulting in different state spaces has 

a noticeable impact on the identification based on the PSO method. Different shape of 

appropriate fitness function prevents particles from getting stuck in local optimum. The 

trend to stay near local optimum is the main problem of the PSO method and a number 

of articles are discussing it. Therefore we suggest that a natural combination of different 

models (fitness functions) can considerably reduce the problem. 
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