
AiMT Advances in Military Technology 

Vol. 10, No. 2, December 2015 
 

 
 

Underwater Bearings-Only Passive Target Tracking 

Using Estimate Fusion Technique 

D.V.A.N. Ravi Kumar
 1*

, S. Koteswara Rao
2
 and K. Padma Raju

3
 

1 Department of Electronics and Communications Engineering, Gayatri Vidya Parishad College  

of Engineering for Women , Affiliated to Jawaharlal Nehru Technological University,  

Kakinada, India 
2 Department of Electrical and Electronics Engineering,  

Kalasalingam University, Vijayawada, India 

 3 Department of Electronics and Communications Engineering, 

Jawaharlal Nehru Technological University, Kakinada, India 

The manuscript was received on 15 September 2015 and was accepted after revision 

for publication on 15 December 2015. 

Abstract:  

Estimate Fusion Technique (EFT) for Bearings–Only passive target tracking involves 

a process of estimating the state of a moving target by fusing the estimates given by 

different Nonlinear estimators which are driven by different Bearing measurements 

supplied by towed array. The estimates are fused with the help of a Weighted Least 

squares Estimator. This novel method has an advantage over the traditional nonlinear 

Estimators such as the Extended Kalman Filter (EKF) and Unscented Kalman Filter 

(UKF) in terms of estimation errors which is proved in this paper by performing 

simulation in Matlab R2009a for a wartime scenario. 
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1. Introduction 

Tracking (a process of estimating the present and future state of a moving target) is an 

essential signal processing concept in war environment to remain safe or to blast the foe. 

It normally involves estimation of the target motion parameters i.e. range, bearing, 

course and velocity with the help of the noisy measurements i.e. range and bearing in 

case of active tracking and only bearing in case of passive tracking. Depending on the 
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relative position of the sensors with respect to the propeller of the observer’s vehicle, the 

intensity of the noise in the measurements varies and the measurements can be classified 

as hull Mounted and towed array. In detail, if the sensor lies on the body of the ship, it 

experiences more noise (because sensor is close to the propeller). These sensors are 

termed as hull Mounted sensors (hull meaning body). On the other hand the sensors 

which are far from the body of the ship experiences less noise (because sensor is far 

from the propellers noise). These sensors are termed as the towed sensors (tow means 

drag). In this paper the passive target tracking is done using towed array measurements. 

Tracking a target with active sonar measurements,which involves the linear state 

and measurement equations is dealt with traditional Kalman filter equations 5.17, 5.18 

and 15.19 of [2]. Here the assumption is that the measurement noise in rectangular 

coordinates has a mean of zero even after the transformation of measurements from 

polar system to rectangular system as shown in [8].The performance of Kalman filter is 

improved by precise computation of the mean and covariance of the sensor noise after 

the system transformation, followed by subtraction of the calculated mean from the 

measurements. This new Kalman filter for active tracking process with the removal of 

the bias from the measurements showed a great promise according to results shown 

in [8]. 

Tracking a target with passive measurements, where the measurement equation is 

nonlinear is dealt with the conventional nonlinear estimators, such as Extended Kalman 

Filter (EKF) in modified polar coordinates. This filter linearizes a nonlinear 

measurement equation using the Taylor series expansion [6]. The EKF when applied to 

Bearings-Only Tracking (BOT) struggles to perform well occasionally in terms of 

convergence of estimation error. This is not acceptable in war environment. The solution 

to this problem is given by Modified Gain Extended Kalman Filter (MGEKF) where a 

modified gain function in covariance matrix of the state vector is introduced [5]. 

Uhlman and Juliers Unscented Kalman Filter (UKF) [3], which works on the 

principle of unscented transformation of estimate and covariance over a nonlinear 

function, made BOT life easier as shown by Kotewara Rao et al. [7]. BOT with towed 

array measurements using UKF showed its upper hand over EKF in [4]. Occasionally 

some hybrid methods and additional input filters came and showed their importance for 

tracking. An example of hybrid method is given in [9] where Pseudo Linear Estimator 

(PLE) and MGEKF are combined together to result in a new filter with an improved 

performance. [10] shows an example of additional input filters where it is assumed that 

the Doppler measurement is also available in addition to range and bearing 

measurements. 

Recently the particle filter (PF) and its derivatives [1, 2] entered almost all fields 

of engineering, like BOT where the estimation is a primary requirement. The popularity 

of PF-based algorithms is due to their capability of handling highly nonlinear state and 

measurement equations and their ability to deal with any type of noise at the cost of large 

computational time and sophisticated processor requirements. 

A novel method based on fusion of estimates is proposed in this paper. In this 

technique, multiple measurements supplied by different sensors of towed array are 

applied to different filters; for example: UKF, which in turn produces different estimates 

along with the confidence levels in the estimates. These estimates are fused together 

using a weighted least squares estimator to get the final estimate of the state of a moving 

target. The block diagram of this approach is shown in Fig. 3. Based on the principle of 

operation, this filter can produce improved performance in estimation error over EKF 

and UKF as shown in Fig. 1 and less computational cost than PF as shown in Fig. 2. 
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Section 2 deals with the mathematical modelling of a moving target, towed array, 

Estimate Fusion technique (EFT), EFT based UKF expressions and at the end, the 

performance comparison parameters namely RMS error in position, RMS error in 

velocity and Estimator convergence time are defined. Simulation and explanation of 

results for a wartime scenario is shown in Section 3 and finally the paper is concluded in 

Section 4. 

Notation X(aïb) = X(a/b) in the paper = the value of X at time ‘a’ considering the 

measurement at time ‘b’. 

 

 

 
2. Mathematical Modelling  

2.1. Mathematical Modelling of a Moving Target  

The components of the position of a target at time ‘k’ in x and y directions are denoted 

by x(k), y(k) and the components of the velocity of a target at time ‘k’ in x and y 

directions are denoted by )(kvx and )(kvy .State vector as shown in (1) can be 

considered for tracking process. 

                                 TkvykvxkykxkX )()()()()(                                    (1) 
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    Fig.1 Comparison of the Nonlinear Estimators in Terms of Accuracy. 
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Fig. 2 Comparison of the Nonlinear Estimators in terms of   

Computational Cost. 
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The state equation of a moving target as per linear, discretized wiener velocity model is 

shown in (2) 

                                        )()()1( kQKFXKX                                             (2) 

F is the state transition matrix=
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Where T  is the time interval between the states, Q(k) is the Gaussian process noise 

with a mean zero and a co-variance as given in eqn.13 of [4] is as follows 
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Where q is the spectral density of the acceleration errors. 

  

 

 

 

 

 

 

 

 

 

 

Fig. 3 Block diagram of EFT-UKF 

2.2 Mathematical Modelling of Towed Array  

Let (x(k), y(k)) be the targets position coordinates at time ‘k’. The towed array is 

comprised of two sensors S1 and S2 located at (S1(1), S1(2)), (S2(1), S2(2)) 

respectively. The azimuth or the bearing at time ‘k’ as viewed at S1and S2 denoted by 

B1(k), B2(k) is computed by using the geometry in the Fig. 4. 
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The noise corrupted bearing measurements at S1 and S2 denoted by Bm1(k) and Bm2(k) 

are expressed as 

                                               (k)+Bn1(k) Bm1(k)=B1                                             (5.1) 

                                               k)+Bn2(k)Bm2(k)=B2(                                              (5.2) 

If the measurement vector is considered as 
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y(k)                                      (6) 

The measurement equation can be written as ),k)+v(k)y(k)=h(x(k                       (7) 

The transfer function is denoted by k))h(x(k),  and is computed using (8) 
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v(k) in (7) is a sensor noise of type ‘Gaussian’ with a null mean and co-variance  R of 

the form as shown in (9) 

                                          2
2

2
1

T ,σσ ]=diagv(k) R=E[ v(k)                                          (9) 

Where 2
2

2
1 ,  are the variances of noise in the measurements given by sensors S1 and 

S2. 

2.3 Estimate Fusion Technique 

If sensors which are numbered 1 and j+1 of towed array supply a measurement ymj(k) 

using (6). Then yml(k) with l=1, 2... p-1 are the measurements obtained from p elements 

of the towed array with the corresponding transfer functions hl(x(k),k) obtained using 

(8), covariance matrices Rl obtained using (9). Different UKFs will process these 

measurements to produce (kïk)Xl  with l=1, 2.... p-1 as estimates with the corresponding 

covariance matrices as Pl(kïk). Matrix (kïk)Xl  is of the form as shown in (10) 

           T(n)(2)(1) (kïk)xl..(kïk)xl (kïk)xl(kïk)Xl                 (10) 

The i
th

 element of the estimate at k
th

 instant of time considering the k
th

 measurement 

given by the l
th

 UKF is of the form (kïk)xl (1) . Covariance matrix of the estimate is 

denoted by )ï( kkpl  and can be expressed in the form of (11) 

                                    nplplplkkpl ..21diag)ï(                                       (11) 

lip  notation in (11) denotes l
th

 UKFs variance in the estimate of i
th

 element of its state. 

The estimates given by all the p-1 UKFs i.e. ( (kïk)1x (i) (kïk)2x (i) ....... (kïk))1(x (i)p ) 

are fused to give the consolidated estimate )ï( kkX i . The suffix i indicates the i
th

 

element of the estimate. 
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)(kli  is Gaussian noise of dimensions (p-1)x1, mean of zero and covariance R(i). It is the 

error in i
th

 element of the estimate. 

                                       )p..pp(R 1)i(p2i1i(i)  diag                               (13) 

Eq. (13) is inherited from Eq. (11) as follows 

 

If we are trying to fuse two estimator outputs with four elements in the state vector. Then 

(11) will be in the form of 
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with )ï(1 kkp  and )ï(2 kkp  as the covariance matrices associated with the estimates 

given by the first and the second UKF respectively. 

 

Then the covariance matrix associated with the first element is denoted by )1(R  
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From the above we can write that the covariance corresponding to the i
th

 element is 

),( 21 ii(i) ppdiagR   for 2 estimator fusion. Similarly for p-1 estimator fusion 

)p..pp(R 1)i(p2i1i(i)  diag  which is Eq. (13). In this way Eq. (13) is 

inherited from Eq. (11). 

 

Now Eq. (12) is rewritten as      )()ï()ï( )()( klkkHXkkY iii                                   (14) 
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                                           And  T 1)x1(p1..11H                                            (16) 

The least squares estimator, Eq. 3.15 of [2] is used to obtain the estimate of )ï( kkX i  of 

(14). It is denoted by (k/k)X (i) . 
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Eq. (17) is rewritten as Eq. (18) using Eq. 3.19 of [2]  
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The fusion-based estimate taking k
th 

 measurement into consideration denoted by 

(k/k)X  is composed using (18) 

                       T(n)(2)(1) (kïk)x..(kïk)x(kïk)x(kïk)X           (19) 

The covariance in the fused- estimate is as follows 

                                        
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1p

1
P(kïk)                                                    (20) 

2.4 Estimate Fusion Technique based UKF( EFT-UKF) Equations 

Identify the state vector X(k) of n elements. Then the state equation expressed in the 

form of (21) and measurement equation in the form of (22) are derived. 

                            State equation:   )()()1( kwkFXkX                                 (21) 

Measurement equation: )()),(()( kvkkxhkym    ),0(~)( Qkw  ),0(~)( Rkv     (22) 

There after the initialization of EFT-UKF is performed, which involves the initialization 

of state as shown in (23) and initialization of the covariance as shown in (24). 

                                                         )]0([)0ï0( XEX                                              (23) 

                                           ]))0ï0())(0ï0([()0ï0( TXXXXEP                         (24) 

As the state equation is linear in nature,a priori estimate of the state and the covariance 

are computed using the prediction step of normal kalman filter. 

                                                    )1ï1()1ï(  kkXFkkX                                   (25) 

                                                   QFkkFPkkP T  )1ï()1ï(                               (26) 

Correction step starts with the computation of 2n+1 sigma points using the following 
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Where   is a scaling parameter given by 

nkan  )(2  
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The weights corresponding to the sigma points are computed using the following 

relations 
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Where  ,  and ka are the parameters used in the algorithm. 

The 2n+1 sigma points are transformed over the nonlinear measurement equation i.e. 

Eq. (22) 

                                              )),(()( kkxhkym ii     .2.....3,2,1 ni                            (29) 

A posterior estimate computation starts by taking the weighted average of the 

transformed sigma points as given below 

                                                
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)()( )()(                                            (30) 

variances corresponding to the a posterior estimate denoted by yP  is computed 

according to Eq. 14.65 of [2] as follows 

                        RkmykymkmykymwP
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Crosscovariances of the a posterior estimate denoted by xyP  is computed according to 

Eq. 14.66 of [2] as follows. 
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               (32) 

The Kalman gain kk  is calculated using Eq. 14.67 of [2] as follows 

 

                                                             
1

 yxy PPkk                                                 (33) 

Finally the a posterior estimate denoted by )ï( kkX  is computed according to Eq. 14.67 

of [2] as follows. 

 



40   
 

D.V.A.N. Ravi Kumar
 
, S. Koteswara Rao and K. Padma Raju 

                                    ))()(()1ï()ï( kmykymkkkkXkkX                               (34) 

Covariance matrix corresponding to the a posterior estimate denoted by )ï( kkP  is 

computed according to Eq. 14.67 of [2] as follows. 

 

                                         
T

y kkPkkkkPkkP )()()1ï()ï(                                      (35) 

Equations (23) to (35) are the UKF equations applied for all the p-1 measurements 

(ymj(k) j=1,2,…p-1) obtained from the sensors of the towed array to produce )/( kkjX , 

)/( kkPj  with j=1,2,……p-1 as the aposterior estimates and covariances respectively 

using the corresponding transfer functions hj(x(k),k). The least squares estimator is used 

to fuse all the p-1 estimates to give (kïk)X , as fused estimate with )/( kkP  as the 

corresponding covariance matrix. 

The fused estimate is composed of n elements as follows 

                T(n)(2)(1) (kïk)x..(kïk)x(kïk)x(kïk)X                  (36) 

Where the i
th  

element  of the fused estimate is derived in estimate fusion technique i.e. 

section 2(c) and is shown below in (37) 
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If we assume all the weights are equal, then the fused estimate can be written as 
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The related covariance matrix is given below 
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2.5 Performance Comparison Parameters 

(i) Root mean square error in position: as given in Eq. 6.104 of [1]  

     RMS position error (k)=    

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
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
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1
               (40) 

‘N’ in the above equation denotes the total number of Montecarlo (MC) runs. The actual 

components of position in x and y directions at the instant of time ‘k’ in the MC run ‘i’ 

are denoted by )(kxi , )(kyi , while the estimated components are represented by 

),(kxi  )(ky i . 
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(ii) Estimator convergence time: It is the duration spent by the estimator to drag root 

mean square error in position to less than three hundred metres. 

(iii) Root mean square error in velocity: 

   RMS velocity error(k)=    

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
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               (41) 

)(kvxi  and )(kvy i  are the true velocity components while )(kvxi  and )(kvy i  are the 

corresponding estimated components. 

3. Simulation, Results and Analysis  

War time scenario: The target is assumed to be initially at a distance of 18 km and 

a bearing of 100 degrees with respect to the true north. Thereafter it tries to move at a 

constant velocity of 10 meters per second in the direction of true north but it is disturbed 

to some extent due to the acceleration errors (in both x and y directions ) of Gaussian 

type with a mean of zero and a standard deviation of 0.01. The towed array used is 

provided with three sensors which are located at (0, 0), (0, 500) and (0, 1000). These 

sensors have the capability of providing the bearing measurements to the signal 

processing unit of the submarine after every 1 second. The measurements are not pure as 

expected. They are mixed with some additive noise of Gaussian type. The mean and the 

variance of this Gaussian noise is assumed to be 0 and 0.28 degree r.m.s respectively. 

The UKFs whose estimates are fused are initialized with a deviation (+3000 m in x,-

3000 m in y in terms of position and +5 m/s in x, -5 m/s in y in terms of velocity) from 

the true values. The covariance matrix is initialized with a diagonal matrix [900 k, 900 k, 

25, 25]. The scaling parameter   is set to a value very close to zero while   is set to 2, 

which is an optimal value while dealing with Gaussians. The total number of Montecarlo 

runs performed is 50 with the simulation duration of 800 seconds. In this the authors 

have fused the estimates of UKFs and the resultant is named as Estimate Fusion 

Technique based UKF (EFT-UKF). 

The processor requirements of KF, EKF, UKF and the proposed EFT-UKF are 

nearly the same (complexity of all the above mentioned algorithms is same) while PF 

requires nearly 1000 times more sophisticated processor as per [1] and [2]. 

In Fig. 7 the estimated path by EFT-UKF is almost superimposed over the actual path of 

the target indicating the success of the EFT-UKF. 

Fig. 6 shows that the estimation error in velocity using EFT-UKF gradually tends 

to the smallest value compared to those of UKF and EKF after the transition period 

suggesting the improvement attained by using Estimate fusion technique. The superiority 

of this proposed method is well illustrated by Fig. 5 and Tab. 1 which shows that the 

RMS position error and convergence time of the estimator of the novel method is much 

smaller than those of the conventional nonlinear estimators. 
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Fig. 5 Comparison of RMS position errors 

 

 
Fig. 6 Comparison of RMS velocity errors 
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Underwater Bearings-Only Passive Target Tracking 

Using Estimate Fusion Technique 

 
Fig. 7 Actual path and estimated path provided by EFT-UKF 

Tab. 1 Comparison table of nonlinear Estimators 

Filter RMS position error (m) RMSE velocity 

error (m/s) 

Estimator 

Convergence 

Time(s) 

EKF 194 0.457 606 

UKF 194 0.424 583 

EFT-UKF 108 0.353 343 

 

4. CONCLUSIONS 

EFT based UKF has a superior performance over the conventional nonlinear estimators 

such as EKF and UKF in terms of the estimation errors in position and velocity and at 

the same time it needs less computational requirements than PF which suggests that, the 

estimate fusion technique can provide an optimal solution for tracking a moving target in 

passive mode. The performance of all the existing nonlinear estimators can be sent to 

a new level by employing the EFT. 
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