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Abstract:  

The paper deals with development of a simple flight model suitable to be implemented as 

a C++ algorithm for real-time usage. This model is used for embedded flight simulator 

in a synthetic vision system. The developed flight model is validated by comparing it 

longitudinal and lateral responses with typical response modes of an airplane. 
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1. Introduction 

Nowadays, the producers of miniaturized, low power embedded systems added support 

of accelerated 3D graphic that allows more complex visualization for embedded 

applications. In our department there were two projects focused on synthetic vision 

systems and their application in airplane avionics recently solved. The real-time 3D 

visualization systems based on digital geographic data was developed during the work 

on these projects. This 3D visualization system was connected with the Inertial 

Navigation System (INS) unit and it allows in-flight visualization of avionics data and 

3D terrain. The architecture of the synthetic vision system is modular (Fig. 1). The 

synthetic vision system consists of 3 independent modules that are connected by 

software buses [4].  

The 3D terrain visualization core processes airplane position and orientation data to 

visualize 3D environment based on digital geographic data.  

The Avionics module visualizes various avionics instruments based on data from 

INS module. 
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The INS module is the interface layer to the used INS unit. The synthetic vision 

system can use various INS hardware units so this layer provides a unified interface to 

these unit and works like a hardware abstraction layer.  

 

 
Fig. 1 Modular architecture of synthetic vision system 

This synthetic vision system underwent flight tests that proved its functionality 

and potential for additional development. One of the possible improvements was add 

an embedded training feature that would allow flying the planned route on the ground 

before the actual flight or using this system as simplified flight simulator. Thanks to 

the module based architecture the adding of flight simulation feature can be done by 

just replacing the INS module with the new Flight Simulation module (Fig. 2). The 

Flight Simulation module can be implemented as a simulated INS unit that processes 

flight controls positions and uses built-in simulation model the produce simulated INS 

output data. Using this architecture the rest of the synthetic vision system does not 

need to be changed so the embedded flight simulation feature can be implemented at 

minimal cost. 

 

Fig. 2 Flight simulation module in synthetic vision system 

2. Flight Model  

In the paper the following notation will be used:  
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  (O,  ⃗⃗⃗⃗ ,   ⃗⃗⃗⃗ ,   ⃗⃗  ⃗) Earth frame of reference 

  (G,  ⃗⃗⃗⃗ ,   ⃗⃗⃗⃗ ,   ⃗⃗⃗⃗ ) Aerodynamic frame of reference 

  (G,  ⃗⃗⃗⃗ ,   ⃗⃗⃗⃗ ,   ⃗⃗  ⃗) Plane frame of reference 

O A fixed point relative to earth 

G Centre of mass of the plane 

 ⃗   Velocity of G relative to the atmosphere 

   Angle of attack 

   Angle of sideslip 

   Transformation matrix       

 ,  ,   Coordinates of the plane in    

   Azimuth angle 

   Elevation angle 

   Bank angle 

   Transformation matrix       

    
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  Angular velocity of the plane relative to the earth 

         Coordinates of     
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ in    basis 

  
⃗⃗⃗⃗   Weight 

  
⃗⃗⃗⃗   Thrust 

    Maximum thrust at the sea level 

  ⃗⃗  ⃗  Aerodynamic force 

         Coordinates of   ⃗⃗  ⃗ in    basis 

  
⃗⃗ ⃗⃗  ⃗  Moments in G due to the aerodynamic force 

         Coordinates of   
⃗⃗ ⃗⃗  ⃗ in    basis 

   Density of air 

    Density of air at the sea level 

   Mass of the plane 

   Inertia matrix 

         Inertial momentums 

S Wing area 

   Mean aerodynamic chord 

    Drag coefficient 

     Zero-lift drag coefficient 

    Induced drag coefficient 

    Lateral coefficient 

    Lift coefficient 

    Zero-lift angle of attack 

    Rolling moment coefficient 

    Pitching moment coefficient 

    Yawing moment coefficient 
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   ,     Gradient of force or moment coefficients 

   ,    ,     Rolling, pitching, yawing damping coefficients 

    ,     ,      Coefficients representing the influences of the 

control surfaces 

    Position of the roll control (angle) 

    Position of the pitch control (angle) 

    Position of the yaw control (angle) 

    Position of the throttle in percent 

     SPPO pulsation (cf. 3.1.1.) 

     SPPO period 

     Phugoid period 

     Roll subsidence time constant 

     Sideslip oscillation pulsation 

     Sideslip oscillation period 

     Spiral mode time constant 

  

  {         } , All angles are in radians. 

The flight model is based on these hypotheses: 

 Earth is fixed and flat. Thus the earth frame of reference is a Galilean 

reference frame. 

 Gravity is constant relative to the altitude. Thus is   a constant vector. In 

what follows, we will consider that:  

  ‖  ‖            

 The plane mass and inertial momentums are constant. This hypothesis would 

not be valid if we studied a cruise flight, due to fuel consumption.  

 The plane is rigid and symmetrical (relatively to geometry and mass). Thus 

the inertia matrix can be written as follows in the plane frame of reference: 

  (
    
   

    
)

  

 (1) 

 The direction of thrust is the axis of the fuselage,   ⃗⃗⃗⃗  , and its application point 

belongs to the line (G,   ⃗⃗⃗⃗ ). Especially it supposes that the thrust is 

symmetrical (in the case of a multiengine plane). 

 The density of air,ρ , is constant relatively to the altitude and time in what 

follows, we will consider that: ρ = 1.255 kg/m
3
. 

 There is no wind thus  ⃗ , the velocity of G relative to the atmosphere, is also 

the velocity of G relative to the earth. 

2.1. Algorithm   

As a reminder, the aim of this project is to simulate flight by implementing a real-time 

flight model algorithm in a synthetic vision program. Thus, the coordinates of the 

plane in the earth frame of reference – x, y, z – and the angular position of the plane – 
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ψ ,θ , Ф – are the outputs needed. Obviously, the inputs are the control surfaces and 

throttle positions – δl, δm , δn , δx. 

Here are the equations that will be used to estimate the outputs [3]: 
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(4) 

The Eq. (2) is describing movement according to centre of gravity; the Eq. (3) 

describes movement around centre of gravity. The Eq. (4) illustrates the relationship 

between positional angles and angular velocities. As this is a highly coupled system, 

there is no way to solve it analytically without more hypotheses [2, 3, 5]. The C++ 

language will be used to estimate it by computing it in a short time period (integration 

method). 

2.2. Integration Method 

The principle is to use the previous known value to calculate the next one thanks to the 

derivate. The shorter the period of time is the more accurate results are obtained. 

Firstly, the Eqs (1) and (2) can be rewritten as follows: 
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  (6) 

 

Assuming      ,   ̇           ̇            . This is why this term does 

not appear anymore in  ̇ equation. 

Moreover, whatever differentiable scalar function f: 

 ̇        
    

              

  
  (7) 

Hence, assuming     , 

 ̇     
              

  
                     ̇              (8) 

This simple Euler method has been chosen for its simplicity and easy implementation 

in programming language for the real-time application. The above equation is 

computed every rendered frame so the    is very small (less than 16 ms). This simple 

method gave us stable results even for high speed airplanes (tested Mirage model). But 

in general it is intended for subsonic aircrafts (L-39, L-159). 

With all these elements, we can easily write the C++ algorithm which will 

provide us the coordinates and angular positions of the plane in the real time [1]. 

2.2. The C++ algorithm 

Definitions 

At first it is necessary to define the aircraft structure that defines all the features of the 

plane, from its mass to its aerodynamic coefficients. 

Secondly it is necessary to define a position structure. The position structure 

gathers the coordinates of the plane in the earth frame of reference – x ,y, z – and the 

angular position of the plane –       – but also other values needed to calculate the 

next position: the angle of attack α, the angle of sideslip β, the coordinates of     
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   in 

the plane frame of reference – p, q, r – and the velocity  ⃗ . 
The main function that solves the flight model equation is the evolution function. 

According to the Eq. (8), it returns the next value thanks to the previous one, the 

derivate and the time period (Euler method). 

The first four parameters of evolution function represent the position of control 

surfaces and throttle at a given moment. The first one P is the position of the plane at 

this same moment. The second one is the time period    and third one is the type of 

aircraft used. And finally P2 is the position of the plane at the next moment (    ). 

Calculation of the new angular position and the new angular velocity 

First of all, we have to calculate the forces and moments applied to the plane at the 

moment t. Then, as explained in paragraph 2.1, we can estimate the new values of 

     , using Eq. (6). 
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Calculation of the new coordinates 

We have to apply the transformation from the plane to the earth frame of reference R. 

The velocity will be calculated in the earth frame of reference. Then the new 

coordinates are estimated according to the Eq. (8). 

Calculation of the new velocity 

Finally, the Eq. (5) provides us the features of the new velocity that we will be needed 

for the next call of evolution. 

3. Evaluation of the Model 

The C++ algorithm, developed in the previous section has been implemented in the 

synthetic vision system and thus, using a joystick, it becomes a simulator. Even if we 

can experiment that it reacts qualitatively like a real plane, we have to confirm it 

quantitatively. This is why we are going to analyse the responses of our real-time 

flight model algorithm. We choose the well documented Airbus A300 features. 

For the evaluation purposes the joystick control is not used. Firstly the plane 

position is initialized in a longitudinal equilibrium i.e. a straight and level flight 

(except for the spiral mode). Then in a loop is executed the flight model function with 

the inputs corresponding to the mode that is evaluated. Finally the result values from 

each time step are transcribed from a data text file and the values are represented by a 

curve. 

There were evaluated these flight modes:  

 Longitudinal modes 

o Short period oscillation (SPPO) 

o Phugoid 

 Lateral modes 

o Roll subsidence 

o Sideslip oscillation and Dutch rol Roll l 

o Spiral mode 

Due to the paper length restriction just the Spiral mode will be explained here.  

3.1. Spiral Mode 

The spiral mode represents evolution of the bank angle   when      and     . 

Either this mode is stable and converges to zero, or it is unstable and the bank angle 

increases. Assuming      , theory shows that the time constant of the spiral mode 

is: 

    (
             

             

)
  

 
  (8) 

 

The Fig. 3 shows the response of our flight model algorithm, with the following 

inputs (angles in radians). 

Tab. 1 Response of flight model 
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Fig. 3 Spiral mode with        

 

Thus, we can compare the response of our model with the theoretical result:  

 

Tab. 2 Comparison of results 

RS time constant Theory 
Flight model 

algorithm 
Difference 

                          

 

Time constant express the minimal acceptable time to double the initial roll angle.  

3.2 Discussion of Results 

Accordingly, the analysis of the longitudinal and lateral modes (only spiral mode is 

described in this paper) confirms that the algorithm developed responds as an actual 

aircraft. Indeed the five typical response modes have been pointed out. The differences 

with theoretical values are between 4 and 8.2 percent.  

4. Conclusion 

This project was aimed to develop a real-time flight model algorithm that can be used 

as an embedded simulator in a synthetic vision system (Fig. 4). The real-time issue is 

important so this why we have not used a detailed aerodynamic model that would have 
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implied lengthy calculation. Moreover, one key point was the model used to describe 

aerodynamic forces and moments. Indeed, the strong hypotheses, which conduct to the 

linearization of aerodynamic coefficients this flight model is only valid in a small 

range of angles of attack. 

The C++ algorithm was written using the equations and the basic integration 

method by working on a short period of time. Thus it provides the coordinates of the 

plane in the earth frame of reference and the angular position of the plane in response 

to the control surfaces and throttle positions. 

This algorithm has been finally evaluated by analysing its longitudinal and lateral 

responses to basic inputs. Typical response modes have been highlighted. Thus we can 

affirm that we have simulated the motion of an actual plane. However, as explained 

above, this flight model algorithm is not valid for extreme angles of attack. As a result, 

it does not demonstrate stall phenomenon for instance. Widen the flight envelope 

simulated, especially to extreme angles of attack, non-linear aerodynamic phenomena 

should be taken into account. This would require a more complex model regarding 

aerodynamic coefficient. 

Lastly, set apart the aerodynamic issues, we could study the issue of latest fighter 

jets. Indeed, in order to maximize their manoeuvrability, these aircrafts are built 

unstable. This is thanks to their fly by wire technology that pilots manage to control 

them. Thus, another module should be implemented in the program in order to 

simulate what happens between the joystick orders and the controls motion. 

 

Fig. 4 Using of the flight model in simulator 
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