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Abstract:  

Sensor fault detection and identification (SFD/I) has attracted considerable attention in 
military applications, especially when safety- or mission-critical issues are of paramount 
importance. Here, two readily implementable approaches for SFD/I are proposed 
through hierarchical clustering and self-organizing map neural networks. The proposed 
methodologies are capable of detecting sensor faults from a large group of sensors 
measuring different physical quantities and achieve SFD/I in a single stage. 
Furthermore, it is possible to reconstruct the measurements expected from the faulted 
sensor and thereby facilitate improved unit availability. The efficacy of the proposed 
approaches is demonstrated through the use of measurements from experimental trials 
on a gas turbine. Ultimately, the underlying principles are readily transferable to other 
complex industrial and military systems. 
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1. Introduction 
Electronic equipment now supports almost every technical device and appliance to 
help a user or operator, with sensors taking the role of localised ‘eyes and ears’. Such 
systems are of special importance for military application where the safety issues are 
of significant concern. Sensor fault detection and identification (SFD/I) has therefore 
attracted considerable recent attention, both in industrial and military sectors, due to 
the benefits of reducing down-time and loss of productivity, and increasing the 
assurance of safety, quality and reliability of systems.  

The uses of Neural Networks (NNs), for instance, have become popular candidate 
solutions for SFD/I. By way of example, [1] applied NNs to detect anomalous sensor 
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signal patterns for advanced military aircraft, whilst Probabilistic Neural Networks 
(PNNs) have been reported for detecting sensor faults specifically for gas turbine 
systems, with some success (although the sensitivity of PNNs was also discussed in) 
[2]. Moreover, the application of unsupervised self-organizing map neural networks 
(SOMNNs) for fault detection has also been shown in [3], with a study in [4] also 
pointing out that SOMNNs generally provide better solutions than approaches based 
on other radial basis function neural networks (RBFNNs). 

Cluster analysis methodologies have also been a popular choice for system fault 
detection and diagnosis. Compared to the use of ‘black-box’ models typical of those 
used in NNs, or alternative complex eigenvector-eigenvalue techniques such as 
principal component analysis (PCA), cluster analysis is a more straight-forward 
technique derived from relatively basic distance algorithms, and have therefore gained 
favour since they are readily implementable and interpreted. Specifically in [5], four 
unsupervised clustering models are employed, including SOMNNs, hierarchical tree 
models and quality adaptive threshold models, along with a new hybrid model for fault 
diagnosis of industrial robots. From the results, the authors conclude that supervised 
classification algorithms often failed when encountering ‘new data’, whilst in contrast, 
unsupervised techniques, such as SOMNNs and hierarchical clustering (HC) methods, 
are very capable of novelty detection under such conditions [6,7].  

An advantage of both techniques proposed in this paper (HC and SOMNNs), is 
that they are capable of detecting sensor faults within a large group of sensors rather 
than individually monitoring only a single sensor. Whilst SOMNNs arrange high-
dimensional data automatically by their topological properties through the ‘black-box’ 
approach, and result in numerical classifications, an unsupervised agglomerative HC 
method is utilized to build a graphical interface showing the hierarchy of clusters 
according to dataset similarities. Moreover, the proposed approaches can achieve 
SFD/I in a single stage. Such rapid and secure fault identification procedures are very 
important in military systems where the aggressive surrounding activities may create 
hazards to human or technical resources.  

After identifying faults, to discriminate sensor failures from other types of 
component failure, the paper goes on to consider the use of other sensors in the group 
to estimate the data that a potentially faulted sensor would be providing (as if it 
remained operational). An extension of the SOMNN algorithm is employed, and a 2l -

norm error index is used to evaluate the ‘estimation’ results.  

2. Hierarchical Clustering  
The underlying concept of agglomerative HC is to assemble a set of objects into a 
hierarchical tree, where objects with similar characteristics join in lower branches and 
these branches join based on object ‘similarity’ [8]. Objects with the smallest distance 
between them are joined by a branch of a tree (i.e. a cluster). Further clusters are then 
formed from merged sub-clusters, and the hierarchical process iterates until only one 
cluster remains. The resulting hierarchical tree is then dissected according to either the 
linkage-distance or cluster number, and in so doing provide novelty detection. 

Although a number of distance- and linkage-functions have been proposed, here, 
the most common measure, the Euclidean distance, is used: 
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where x and y are two 1×N vectors, i.e. the signals, ( )Nxxx ,,, 21 L  and ( )Nyyy ,,, 21 L , 

along with an average linkage measure to calculate the mean distance between all pairs 
of objects in clusters m and n: 
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where mNj ,,2,1 L=  and nNk ,,2,1 L= . ( )nkmjd yx ,  is the distance between two 

objects in the two clusters.mN  is the number of objects in cluster m, and nN  is the 

number of objects in cluster n.  
The methodology is readily implementable for SFD/I on different groups of 

sensor measurements.  For instance, a group of 21 sensors is considered here, 
including 8× bearing vibration measurements (sensors 1 to 8) and 8× bearing 
temperature sensors (sensors 11 to 18), sited on a twin shaft (generator and power) 
turbine unit, with X and Y sensor orientations on either end of each, as shown in 
simplified form in Fig. 1. A further 5 measurements relating to 2× lubricant oil 
temperature, 2× speed sensors and 1 power sensor, are also included.  

A HC tree is generated daily for the measurements captured from all the sensors. 
An extract of the underlying data is shown in Fig. 2, from which a ‘normal operational 
fingerprint’ of the unit is given by the HC dendrogram in Fig. 3. Following this, the 
developed platform performs automatic classification to distinguish between normal 
operation and sensor faults. By way of example, Fig. 4 shows a diagnosis of a 
potential sensor-16 fault due to a significant change in a scheduled HC dendrogram 
from the unit’s data. On further inspection of the underlying data in Fig. 5, it is evident 
that a fault has been detected. 

Fig. 6 gives an example of circumstances that generated another warning 
resulting from a sensor fault. It is shown from the dendrogram that sensor 6, 
a vibration sensor, is not clustered with the remaining vibration sensors, but is 
clustered with the temperature and speed sensors in the lowest cluster, indicating 
suspect data from the sensor. By subsequently consulting the field-data information in 
Fig. 7, a constant sensor fault is indeed evident on sensor 6. 

 

Fig. 1 The location of the 21 sensors on a turbine system 



16 Y. Zhang, C. M. Bingham and M. Gallimore 
    

 

 

 

Fig. 2 Vibration, temperature, speed and power measurements during normal steady 
operation (S = Sensor) 

 

Fig. 3 HC dendrogram: fingerprint for normal operation (21 sensors) 
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Fig. 4 Automatic warning of sensor 16 failure 

 
 

 

Fig. 5 Vibration, temperature, speed and power information indicating a sensor 16 
fault (S = Sensor) 
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Fig. 6 Automatic warning of sensor 6 fault 

 

 

Fig. 7 Vibration, temperature, speed and power information indicating a sensor 6 
fault (S = Sensor) 

The approach is readily extendable to other sets of sensors. For instance, a group 
of 19 sensors on a gas turbine is now considered, including 13 exhaust gas temperature 
sensors (in this case, with sensor indices 1-13) and 6 burner-tip temperature sensors 
(with sensor indices 14-19).  (Experimental measurements from field trials during the 
commissioning of the unit are used in what follows).  

A fingerprint is found from the daily HC dendrograms that constitutes ‘normal 
operation’ of the unit, shown in Fig. 8, with temperature measurements shown in 
Fig. 9. It can be observed that a clear separation exists between the exhaust gas and the 
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burner tip temperatures in the dendrogram, although it is less apparent from the 
original measurement data. By comparing subsequent data with the ‘normal’ HC 
fingerprint, sensor faults are detected from an object’s cluster changes in the 
dendrogram. By way of example, Fig. 10 shows a subsequent dendrogram that does 
not ‘fit’ that of the normal fingerprint.  In particular, sensor 19 resides in a higher sub-
cluster with a significant change in linkage distance. This is indicative of a change in 
characteristics.  

 

Fig. 8  HC dendrogram: fingerprint for normal operation (19 sensors) 

 

 

Fig. 9 Temperature information for normal operation (S = Sensor) 
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Fig. 10 HC dendrogram indicating a sensor 19 fault 

 

 

Fig. 11 Temperature information showing sensor 19 fault (S = Sensor) 

By then consulting the actual sensor measurements, Fig. 11, it is clear that a 
sensor fault on 19 is evident, or is at least developing. Notably, the unit remained 
operational during this event and may have caused considerable damage if not 
detected. 

Although the presented HC technique has been shown to be very useful for 
SFD/I, there is no direct error estimation method to monitor the algorithms’ 
performance. In such circumstances it is prudent to also use an alternative method that 
can produce classification results. Here an unsupervised SOMNN is used that provides 
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classifications in a graphical manner for operators, once prompted, or output results 
numerically. The resulting classification maps are therefore used as additional 
evidence to support the detection results obtained from HC. 

3. Self-organizing Map Neural Network  
A SOMNN is a competitive learning network [9]. An input data vector, 

[ ] N
Nxxx ℜ∈= ,...,, 21x , with N variables, is associated with a reference vector, 

Nℜ∈ir , which is often randomly initiated to give each neuron a displacement vector 

in the input space. For each sample of )(tx , )(twr  constitutes ‘the winner’, by seeking 

the minimum distance between the input vector and the reference vector, and is 
calculated from: 

 )()()()( tttt iw rxrx −≤−  for ∀ i . (3) 

After obtaining a ‘winner’, the reference vectors are updated using: 

 [ ])()()()()1( , tttntt iw iii rxrr −+=+ , (4) 

where )(, tn iw  is a neighbourhood function, which is normally chosen as Gaussian. The 

reference vectors are adjusted to match the training signals, in a regression process 
over a finite number of steps, in order to achieve the final ‘self-organizing maps’.  

Here, SOMNN training is performed initially using the measurements shown in 
Fig. 9, with 19 variables and 1440 time samples in the network. To obtain a visual 
output of the classifications, the SOMNN is initially ‘trained’ with the output space as 
10×10 hexagonal grids, using Matlab Neural Network Toolbox for convenience in this 
case [10]. The weighting matrices in the component planes for the 19 sensors are 
shown in Fig. 12. It is evident that there is a clear separation of the weighting matrices 
between sensors 1 to 13 and sensors 14 to 19 during normal operation. For operation 
considered to be abnormal (see previous example in Fig. 11), the component planes of 
the map are shown in Fig. 13, where the weighting matrix for sensor 19 is clearly 
different from that of the other sensors. 

To provide the classifications in a numerical format, the SOMNN is trained to 
classify the data from the 19 sensors into 2 patterns, i.e. instead of 64 neurons in the 
output layer, here, there are only 2 outputs (with indices 1 or 2). The classification 
maps for normal operation result in two forms (since there are no target classifications, 
output 1 or 2 could be chosen randomly for one pattern), as shown in Table I, which 
again shows a separation of the classifications between sensors 1 to 13 and sensors 14 
to 19 (matching the planes in Fig. 12). This also provides evidence for having 
confidence in the results from the previous HC method (Fig. 8), demonstrating a clear 
classification separation between the exhaust gas and the burner-tip temperature 
measurements. Having been trained, the network is applied to data from the unit on a 
real-time basis to detect deviations from normal behaviour. By way of example, the 
measurements in Fig. 11 are applied to the SOMNN and the 2-classification procedure 
is applied. The results are shown in Classification map I, of Table II, where sensor 19 
is clearly identified as not being classified with the remaining sensors (matching the 
component planes in Fig. 13), and therefore indicates ‘abnormal characteristics’, as 
expected in this case. The possible types of classification maps that would show sensor 
faults on sensor 19 are given in the form of alternative ‘classification maps II, III and 
IV’. Map II is effectively just a reformulation of map I, which again shows the sensor 
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is behaving differently from the others. Map III or IV shows that the sensor is not 
clustered in its normal group, again indicating erroneous measurement data and a 
potential sensor fault. 

 

Fig. 12 Component planes of the map for normal operation 

 

Fig. 13 Component planes of the map showing sensor 19 fault 
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Table 1 Classification maps for normal operation 

Sensor index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Classification 
map I 

1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 

Classification 
map II 

2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 

Table 2 Classification maps showing sensor fault on sensor 19 

Sensor index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Classification 
map I 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 

Classification 
map II 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 

Classification 
map III 

1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 

Classification 
map IV 

2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 2 

 
An advantage of using SOMNNs is that they are simply realized with a basic 

numeric output. However, the ‘black-box’ nature of ANNs provides little insight into 
the relationship between the actual inputs, and the ultimate confidence in the final 
results at the output. Nevertheless, the SOMNN has been shown to be effective as a 
warning of sensor faults, and for discriminating which sensor is at fault. Whilst HC 
provides a more user-friendly interface for operators, SOMNN can also provide 
classifications in a visual sense by the component planes in a 2-dimensional output 
space, and provide corroborating evidence. 

4. Data Reconstruction 
Following the identification of a faulted sensor, a decision needs to be made as to 
whether operation of the unit can continue, possibly at reduced capacity or lower 
performance, or whether the unit should be shut-down for immediate maintenance.  
The latter option is often of considerable disturbance to both the makers of the unit 
and their customers/operators.  An alternative, therefore, is to try and reconstruct a 
‘best estimate’ of the measurements expected from the faulted sensor with a view to 
retaining the ability to keep the unit operating. This can be accomplished by an 
extension of the SOMNN algorithm. 

Based on SOMNN, for a 2-dimensional output space, the faulted signal can be 
reconstructed by adjusting the weight vector using a combination of its k nearest 
nodes. Firstly, a function is defined to calculate the activation of output neuron n for 
an input vector x by using a Gaussian kernel: 
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where 2
nσ  is a parameter representing the influence region of neuron n. When the 

current sample of sensor measurement data is detected as being faulty, the ‘winning’ 
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neuron for this measurement is considered as being no longer valid, and the weighting 
vector is estimated by considering the k nearest neighbouring neurons in the output 
space, using: 
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where iz  is the estimation of the measurement, i is sensor index and m is the neuron 

index. 
To evaluate the reconstruction performance, the 2l -norm relative reconstruction 

error, E , is used, as follows   
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As a test example, normal operational measurements from burner tip temperature 
sensors are studied, as shown in Fig. 14. The first 1000 minutes are used as training 
data, and estimates of measurement of sensor 19, from 1000 to 2000 minutes, are 
calculated. The original and estimation signals are shown in Fig. 15(a). The 2l -norm 

relative prediction error is 0.005 % for the test example, signifying that the 
reconstruction bears an excellent correspondence with the ‘real’ measurements.  For a 
further operational case study, the method is applied to the experimental trial data with 
a developing sensor fault, Fig. 11, and estimates of what would be expected from 
sensor 19 is reconstructed from the from the data of sensors 14 to 18.  The 
reconstruction is shown in Fig. 15(b). From the results it can be seen that from the 
onset of the ‘fault period’, the reconstructed data follows the ‘normal trend’, as might 
be expected from the characteristics of the other sensors, very reliably.  

 

Fig. 14 Data reconstruction test example (6 burner tip temperature 
sensors)(S = Sensor) 
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(a) 

 
(b) 

Fig. 15 Data reconstruction: (a) for test example; (b) for faulted sensor signal.  

It should be noted that the above technique can also be readily adapted to provide 
‘expected outputs’ from each sensor in a group, which can then be compared to the 
actual real-time measurements, and thereby provide a further simple mechanism for 
detecting unexpected characteristics. 

5. Conclusion 
The paper has presented two readily implementable methods for SFD/I based upon HC 
and SOMNNs. Using a HC method, a dendrogram is produced on a daily basis that is 
compared with a fingerprint representing ‘normal operation’. By detecting ‘novelty’, 
the emergence of sensor faults is shown to be readily achievable. The presented 
SOMNN also provides classification results when considering data from multiple sets 
of sensor groups (viz. vibration, temperature, speed, power), and SFD/I is achieved by 
comparing the resultant classification maps with those considered to represent normal 
operation. A clear separation of the classifications between different groups of sensors 
is therefore achieved by both methods, allowing for SFD/I. Since both methods 
provide comparable results, but based on different algorithms, they can also be used 
for cross-corroboration of outputs. A SOMNN based algorithm is also presented for 
sensor measurement reconstruction. It is demonstrated that estimated measurements 
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from a sensor identified as being faulted, can be reconstructed through an extension to 
the presented SOMNN algorithm. The efficacy of the technique is shown through the 
use of measurements from a set of burner tip temperature sensors that are subject to an 
operational fault. The underlying principles of the techniques presented here are 
currently being used for monitoring a fleet of gas turbines. 
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