A' M T Advances in Military Technology \ L
I Vol. 8, No. 2, December 2013 3 "
£/

Applied Sensor Fault Detection, Identification and
Data Reconstruction

Y. Zhang, C. M. Bingham and M. Gallimore

School of Engineering, University of Lincoln, LihtoU. K.

The manuscript was received on 21 May 2013 andawespted after revision for publication
on 9 October 2013.

Abstract:

Sensor fault detection and identification (SFD/#shattracted considerable attention in
military applications, especially when safety- dssion-critical issues are of paramount
importance. Here, two readily implementable appteex for SFD/I are proposed
through hierarchical clustering and self-organizintap neural networks. The proposed
methodologies are capable of detecting sensor Safuttm a large group of sensors
measuring different physical quantities and achieS&D/I in a single stage.
Furthermore, it is possible to reconstruct the meaments expected from the faulted
sensor and thereby facilitate improved unit availigh The efficacy of the proposed
approaches is demonstrated through the use of memsunts from experimental trials
on a gas turbine. Ultimately, the underlying pripleis are readily transferable to other
complex industrial and military systems.
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1. Introduction

Electronic equipment now supports almost every naxdi device and appliance to
help a user or operator, with sensors taking tie oblocalised ‘eyes and ears’. Such
systems are of special importance for military &gtion where the safety issues are
of significant concern. Sensor fault detection &hehtification (SFD/I) has therefore
attracted considerable recent attention, both dustrial and military sectors, due to
the benefits of reducing down-time and loss of paility, and increasing the
assurance of safety, quality and reliability ofteyss.

The uses of Neural Networks (NNs), for instance/ehlaecome popular candidate
solutions for SFD/I. By way of example, [1] applidiiNs to detect anomalous sensor
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signal patterns for advanced military aircraft, lshiProbabilistic Neural Networks
(PNNs) have been reported for detecting sensottsfaspecifically for gas turbine
systems, with some success (although the sengitifiPNNs was also discussed in)
[2]. Moreover, the application of unsupervised seifanizing map neural networks
(SOMNNSs) for fault detection has also been showij3ijh with a study in [4] also
pointing out that SOMNNSs generally provide bettetuions than approaches based
on other radial basis function neural networks (RBE).

Cluster analysis methodologies have also been algophoice for system fault
detection and diagnosis. Compared to the use atksbox’ models typical of those
used in NNs, or alternative complex eigenvectoeri@lue techniques such as
principal component analysis (PCA), cluster analys a more straight-forward
technique derived from relatively basic distanagoathms, and have therefore gained
favour since they are readily implementable andrpteted. Specifically in [5], four
unsupervised clustering models are employed, imctuOMNNS, hierarchical tree
models and quality adaptive threshold models, aleitly a new hybrid model for fault
diagnosis of industrial robots. From the result® &uthors conclude that supervised
classification algorithms often failed when encauirtg ‘new data’, whilst in contrast,
unsupervised techniques, such as SOMNNs and hiecataclustering (HC) methods,
are very capable of novelty detection under suctditmns [6,7].

An advantage of both techniques proposed in thpep&HC and SOMNNS), is
that they are capable of detecting sensor faultkimvia large group of sensors rather
than individually monitoring only a single sens®hilst SOMNNs arrange high-
dimensional data automatically by their topologipedperties through the ‘black-box’
approach, and result in numerical classificaticars,unsupervised agglomerative HC
method is utilized to build a graphical interfadeowing the hierarchy of clusters
according to dataset similarities. Moreover, thepmsed approaches can achieve
SFD/I in a single stage. Such rapid and securd fdehtification procedures are very
important in military systems where the aggressueounding activities may create
hazards to human or technical resources.

After identifying faults, to discriminate sensoriltmes from other types of
component failure, the paper goes on to consideutie of other sensors in the group
to estimate the data that a potentially faultedseenwould be providing (as if it
remained operational). An extension of the SOMN@b&thm is employed, and b -

norm error index is used to evaluate the ‘estinmtiesults.

2. Hierarchical Clustering

The underlying concept of agglomerative HC is tsemsble a set of objects into a
hierarchical tree, where objects with similar cludeaistics join in lower branches and
these branches join based on object ‘similarity: [Bbjects with the smallest distance
between them are joined by a branch of a treediduster). Further clusters are then
formed from merged sub-clusters, and the hieraathpcocess iterates until only one
cluster remains. The resulting hierarchical trethén dissected according to either the
linkage-distance or cluster number, and in so dgimyide novelty detection.

Although a number of distance- and linkage-functitiave been proposed, here,
the most common measure, the Euclidean distancesgeis:

N

d(x.y)= > (x-w)f. (1)

i=1



Applied Sensor Fault Detection, Identification dbata Reconstruction 15

wherex andy are two 1N vectors, i.e. the signalixl,xz,u-,xN) and (yl,y2,~~-, yN),

along with an average linkage measure to calctifetenean distance between all pairs
of objects in clustersr andn:
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where j=12---,N, and k=12---N,. d(xmj,ynk) is the distance between two

objects in the two clusterbl,, is the number of objects in clustey, and N, is the

number of objects in cluster

The methodology is readily implementable for SFOA different groups of
sensor measurements. For instance, a group ofeR%oss is considered here,
including 8 bearing vibration measurements (sensors 1 to &) &n bearing
temperature sensors (sensors 11 to 18), sited twinashaft (generator and power)
turbine unit, with X and Y sensor orientations dther end of each, as shown in
simplified form in Fig. 1. A further 5 measurementslating to % lubricant oil
temperature, 2 speed sensors and 1 power sensor, are also idclude

A HC tree is generated daily for the measuremeaptured from all the sensors.
An extract of the underlying data is shown in FAgfrom which a ‘normal operational
fingerprint’ of the unit is given by the HC dendrag in Fig. 3. Following this, the
developed platform performs automatic classifigatto distinguish between normal
operation and sensor faults. By way of example,. Fighows a diagnosis of a
potential sensor-16 fault due to a significant gein a scheduled HC dendrogram
from the unit's data. On further inspection of thelerlying data in Fig. 5, it is evident
that a fault has been detected.

Fig. 6 gives an example of circumstances that gdedr another warning
resulting from a sensor fault. It is shown from tdendrogram that sensor 6,
a vibration sensor, is not clustered with the remmg vibration sensors, but is
clustered with the temperature and speed sensotheirlowest cluster, indicating
suspect data from the sensor. By subsequently &mtsthe field-data information in
Fig. 7, a constant sensor fault is indeed evidargensor 6.

Sensor 1  Sensor2 Sensor3  Sensord SensorS  Sensor 6 ernsor § Bearing

vibration

SENSOrs

Sensors 9,10:
Speed sensors

Bearing
temperature
Sensor 18 sensors

Sensor 11 Sensor 12 Sensor 13 Sensor 14  Sensor 15 Sensor 16

Sensors 19,20: Lubricant oil temperature sensors

Sensor 21: Power sensor

Fig. 1 The location of the 21 sensors on a turkipstem
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Fig. 2 Vibration, temperature, speed and power mmeasents during normal steady
operation (S = Sensor)
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Fig. 7 Vibration, temperature, speed and power fimfation indicating a sensor 6
fault (S = Sensor)

The approach is readily extendable to other seten$ors. For instance, a group
of 19 sensors on a gas turbine is now considenetyding 13 exhaust gas temperature
sensors (in this case, with sensor indices 1-18) Gurner-tip temperature sensors
(with sensor indices 14-19). (Experimental measenets from field trials during the
commissioning of the unit are used in what follows)

A fingerprint is found from the daily HC dendrograrthat constitutes ‘normal
operation’ of the unit, shown in Fig. 8, with tema®ire measurements shown in
Fig. 9. It can be observed that a clear separa&tiists between the exhaust gas and the
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burner tip temperatures in the dendrogram, althoitgis less apparent from the
original measurement data. By comparing subseqdeta with the ‘normal’ HC
fingerprint, sensor faults are detected from aneotd cluster changes in the
dendrogram. By way of example, Fig. 10 shows a eglbent dendrogram that does
not ‘fit’ that of the normal fingerprint. In padilar, sensor 19 resides in a higher sub-

cluster with a significant change in linkage distanThis is indicative of a change in
characteristics.
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By then consulting the actual sensor measureméigs,11, it is clear that a
sensor fault on 19 is evident, or is at least dgvelg. Notably, the unit remained
operational during this event and may have causadkiderable damage if not

detected.

Although the presented HC technique has been showbe very useful for
SFD/I, there is no direct error estimation methad rhonitor the algorithms’
performance. In such circumstances it is prudertiso use an alternative method that
can produce classification results. Here an unsigea SOMNN is used that provides
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classifications in a graphical manner for operagtorsce prompted, or output results
numerically. The resulting classification maps ateerefore used as additional
evidence to support the detection results obtafred HC.

3. Self-organizing Map Neural Network
A SOMNN is a competitive learning network [9]. Anmnput data vector,
x=[x1,x2,...,xN]DDN, with N variables, is associated with a reference vector,

r goN, which is often randomly initiated to give eachuren a displacement vector

in the input space. For each samplexdf) , r,(t) constitutes ‘the winner’, by seeking

the minimum distance between the input vector amal reference vector, and is
calculated from:

[x@) =1, @) <[Jx®) =1 )] for Oi . (3)
After obtaining a ‘winner’, the reference vectors apdated using:
i (t+1) = O+, OO -r o], @)

where n,; (t) is a neighbourhood function, which is normally seo as Gaussian. The

reference vectors are adjusted to match the tmisignals, in a regression process
over a finite number of steps, in order to achithesfinal ‘self-organizing maps’.

Here, SOMNN training is performed initially usinget measurements shown in
Fig. 9, with 19 variables and 1440 time sampleshim network. To obtain a visual
output of the classifications, the SOMNN is inilyatrained’ with the output space as
10x10 hexagonal grids, using Matlab Neural Network llboa for convenience in this
case [10]. The weighting matrices in the componganhes for the 19 sensors are
shown in Fig. 12. It is evident that there is aaclseparation of the weighting matrices
between sensors 1 to 13 and sensors 14 to 19 dooimgal operation. For operation
considered to be abnormal (see previous exampiéginll), the component planes of
the map are shown in Fig. 13, where the weightiragrix for sensor 19 is clearly
different from that of the other sensors.

To provide the classifications in a numerical fotnthe SOMNN is trained to
classify the data from the 19 sensors into 2 pastere. instead of 64 neurons in the
output layer, here, there are only 2 outputs (vifitices 1 or 2). The classification
maps for normal operation result in two forms (siticere are no target classifications,
output 1 or 2 could be chosen randomly for oneepaj}t as shown in Table I, which
again shows a separation of the classificationa/dxn sensors 1 to 13 and sensors 14
to 19 (matching the planes in Fig. 12). This alsovgles evidence for having
confidence in the results from the previous HC rodtfFig. 8), demonstrating a clear
classification separation between the exhaust gab the burner-tip temperature
measurements. Having been trained, the networppsed to data from the unit on a
real-time basis to detect deviations from normaiaséour. By way of example, the
measurements in Fig. 11 are applied to the SOMNINtha 2-classification procedure
is applied. The results are shown in Classificatiwap |, of Table Il, where sensor 19
is clearly identified as not being classified wttie remaining sensors (matching the
component planes in Fig. 13), and therefore indigaabnormal characteristics’, as
expected in this case. The possible types of ¢leagbn maps that would show sensor
faults on sensor 19 are given in the form of akéiue ‘classification maps I, 11l and
IV'. Map Il is effectively just a reformulation ahap |, which again shows the sensor
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is behaving differently from the others. Map IIl B shows that the sensor is not
clustered in its normal group, again indicatingoegous measurement data and a

potential sensor fault.
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Table 1 Classification maps for normal operation

Sensorindex 1 | 2| 3| 4| 5| 6| 7| 8 9 1p11|12|13|14|15(16(17|18|19

Classification

1laflal 2] 2] 2l 2 4 o 4 1112 Rk R P |22
map |
Classification| » | 5 | 5| 2| 20 2| 2 2/ 2 4 2 2 2 L 0o h 1 1|2
map Il

Table 2 Classification maps showing sensor faulsensor 19

Sensorindex 1 | 2| 3| 4| 5| 6| 7| 8 9 1p11|12|13|14|15|16|17|18]|19

Classification

Typ1p1) )10y oy 3y y o3 1 1 1op o112
map |
Classification| , | 5| 5| 5 ol ol 2l ol 2 4 2 2 2 b b b |2 |2 |2
map Il
Classification| o | o | 1/ ¢ 1| 1| 2| 2 24 4 1 1 1 b b b 2 |2 11
map Il

Classification
map IV

An advantage of using SOMNNSs is that they are syjmphlized with a basic
numeric output. However, the ‘black-box’ nature AMINs provides little insight into
the relationship between the actual inputs, andultienate confidence in the final
results at the output. Nevertheless, the SOMNN been shown to be effective as a
warning of sensor faults, and for discriminatingiethsensor is at fault. Whilst HC
provides a more user-friendly interface for operstocSOMNN can also provide
classifications in a visual sense by the compomdanes in a 2-dimensional output
space, and provide corroborating evidence.

4. Data Reconstruction

Following the identification of a faulted sensordacision needs to be made as to
whether operation of the unit can continue, pogstt reduced capacity or lower

performance, or whether the unit should be shutrddéeor immediate maintenance.

The latter option is often of considerable disturdxato both the makers of the unit
and their customers/operators. An alternativeretfoee, is to try and reconstruct a

‘best estimate’ of the measurements expected flmnfaulted sensor with a view to

retaining the ability to keep the unit operatinghisl can be accomplished by an
extension of the SOMNN algorithm.

Based on SOMNN, for a 2-dimensional output spalse,faulted signal can be
reconstructed by adjusting the weight vector ustngombination of itsk nearest
nodes. Firstly, a function is defined to calcultdte activation of output neuramfor
an input vectox by using a Gaussian kernel:

-1
T(n) = ex;{?‘ﬁ"x - rn||2) , (5)

where a,f is a parameter representing the influence regionearonn. When the
current sample of sensor measurement data is @dtest being faulty, the ‘winning’
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neuron for this measurement is considered as b®irignger valid, and the weighting
vector is estimated by considering tkenearest neighbouring neurons in the output
space, using:

k

k
Zi = Z(Tmrim) Tm ’ (6)
m=1

m=1
where z is the estimation of the measuremerig sensor index anch is the neuron

index.
To evaluate the reconstruction performance, lth@orm relative reconstruction

error, E, is used, as follows

|
N EEEA:
E=':1|—. 7)
1/znxi 1B
i=1

As a test example, normal operational measurenfests burner tip temperature
sensors are studied, as shown in Fig. 14. The I®8D minutes are used as training
data, and estimates of measurement of sensor 48, #000 to 2000 minutes, are
calculated. The original and estimation signals strewn in Fig. 15(a). Thé,-norm

relative prediction error is 0.005 % for the testample, signifying that the

reconstruction bears an excellent correspondenttethé ‘real’ measurements. For a
further operational case study, the method is appid the experimental trial data with
a developing sensor fault, Fig. 11, and estimatesvltat would be expected from
sensor 19 is reconstructed from the from the ddtasemsors 14 to 18. The
reconstruction is shown in Fig. 15(b). From theutesit can be seen that from the
onset of the ‘fault period’, the reconstructed dafiows the ‘normal trend’, as might

be expected from the characteristics of the othesars, very reliably.
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Fig. 14 Data reconstruction test example (6 burigitemperature
sensors)(S = Sensor)
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Fig. 15 Data reconstruction: (a) for test examp{k) for faulted sensor signal.

It should be noted that the above technique camtesreadily adapted to provide
‘expected outputs’ from each sensor in a groupctwhian then be compared to the
actual real-time measurements, and thereby proaidierther simple mechanism for
detecting unexpected characteristics.

5. Conclusion

The paper has presented two readily implementaktbads for SFD/I based upon HC
and SOMNNSs. Using a HC method, a dendrogram isymed on a daily basis that is
compared with a fingerprint representing ‘normakigiion’. By detecting ‘novelty’,
the emergence of sensor faults is shown to be Iyeadhievable. The presented
SOMNN also provides classification results whensidering data from multiple sets
of sensor groups (viz. vibration, temperature, dp@ewer), and SFD/I is achieved by
comparing the resultant classification maps withisthconsidered to represent normal
operation. A clear separation of the classificatibetween different groups of sensors
is therefore achieved by both methods, allowing 8#D/I. Since both methods
provide comparable results, but based on diffeedgorithms, they can also be used
for cross-corroboration of outputs. A SOMNN basdgbdthm is also presented for
sensor measurement reconstruction. It is demoesirtat estimated measurements
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from a sensor identified as being faulted, candm®mstructed through an extension to
the presented SOMNN algorithm. The efficacy of thehnique is shown through the
use of measurements from a set of burner tip teatper sensors that are subject to an
operational fault. The underlying principles of tbechniques presented here are
currently being used for monitoring a fleet of gabines.
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